Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

STensor

Guides

  • Get Started

Tech Notes

  • Basic Tensor Computation
  • ComputationWithMetric

Symbols

  • ChristoffelSymbol
  • CreateTensor
  • EinsteinTensor
  • Inverse
  • IsMetric
  • LineElement
  • RicciScalar
  • RicciTensor
  • RiemannTensor
  • SCoordinateTransform
  • STensor
  • STensorQ
  • Symmetrize
  • TensorRank
  • TensorSymmetry
  • Tr
  • VolumeElement
  • WeylTensor
BowenPing`STensor`
RiemannTensor
​
RiemannTensor[metric]
returns the Riemann Tensor of metric.
​
Details and Options

Examples  
(7)
Basic Examples  
(1)
Create a metric of 2D sphere first:
In[1]:=
g=CreateTensor["g",{θ, ϕ},DiagonalMatrix[{R^2, R^2Sin[θ]^2}],IsMetric->True]
Out[1]=
STensor
Symbol: g
Rank: {0,2}

Calculate the Riemann Tensor:
In[2]:=
RiemannTensor[g]
Out[2]=
STensor
Symbol: Riemann(g)
Rank: {1,3}

It can be used in calculation directly:
In[3]:=
RiemannTensor
[g]["a","bac"]
Out[3]=
STensor
Symbol: Riemann(g)
Rank: {0,2}
[,bc]
Scope  
(4)

Generalizations & Extensions  
(1)

Properties & Relations  
(1)

SeeAlso
ChristoffelSymbol
 
▪
RicciTensor
 
▪
WeylTensor
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com