Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

STensor

Guides

  • Get Started

Tech Notes

  • Basic Tensor Computation
  • ComputationWithMetric

Symbols

  • ChristoffelSymbol
  • CreateTensor
  • EinsteinTensor
  • Inverse
  • IsMetric
  • LineElement
  • RicciScalar
  • RicciTensor
  • RiemannTensor
  • SCoordinateTransform
  • STensor
  • STensorQ
  • Symmetrize
  • TensorRank
  • TensorSymmetry
  • Tr
  • VolumeElement
  • WeylTensor
BowenPing`STensor`
Inverse
​
Inverse[metric]
gives inverse map of metric, i.e. a (2,0)-rank tensor
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Let g be a metric, which a symmetric (0,2)-rank tensor:
In[1]:=
g=
CreateTensor
"g",{x,y},
Symmetrize
@Array[
"g"
##
&,{2,2}],
IsMetric
True
Out[1]=
STensor
Symbol: g
Rank: {0,2}

Its inverse is a (2,0)-rank symmetric tensor:
In[2]:=
Inverse
[g]
Out[2]=
STensor
Symbol: g
Rank: {2,0}

In[3]:=
TensorSymmetry

Inverse
[g]
Out[3]=
Symmetric[{1,2}]
Properties & Relations  
(1)

SeeAlso
IsMetric
RelatedGuides
▪
Get Started
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com