Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
ExternalFunctions
Guides
Chemistry
External Functions
Mathematics
Symbols
AcentricFactor
DiscreteCosineTransform
DiscreteSineTransform
FastFourierTransform
InverseDiscreteCosineTransform
InverseDiscreteSineTransform
InverseFastFourierTransform
LeeKeslerOmega
LoadExternalFunction
MatrixBandwidth
StielPolarFactor
ArnoudBuzing`ExternalFunctions`
L
o
a
d
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
L
o
a
d
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
[
"
P
y
t
h
o
n
"
,
f
u
n
c
t
i
o
n
]
l
o
a
d
s
P
y
t
h
o
n
f
u
n
c
t
i
o
n
i
n
t
o
y
o
u
r
W
o
l
f
r
a
m
L
a
n
g
u
a
g
e
s
e
s
s
i
o
n
.
L
o
a
d
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
[
"
J
a
v
a
"
,
f
u
n
c
t
i
o
n
]
l
o
a
d
s
J
a
v
a
f
u
n
c
t
i
o
n
i
n
t
o
y
o
u
r
W
o
l
f
r
a
m
L
a
n
g
u
a
g
e
s
e
s
s
i
o
n
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Load Python's fast Fourier transform (FFT) function:
I
n
[
1
]
:
=
e
f
=
L
o
a
d
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
[
"
P
y
t
h
o
n
"
,
"
s
c
i
p
y
.
f
f
t
.
f
f
t
"
]
O
u
t
[
1
]
=
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
S
y
s
t
e
m
:
P
y
t
h
o
n
C
o
m
m
a
n
d
:
"
s
c
i
p
y
.
f
f
t
.
f
f
t
"
Use it directly in the Wolfram Language:
I
n
[
2
]
:
=
e
f
[
{
1
,
2
,
3
}
]
O
u
t
[
2
]
=
N
u
m
e
r
i
c
A
r
r
a
y
T
y
p
e
:
C
o
m
p
l
e
x
R
e
a
l
6
4
D
i
m
e
n
s
i
o
n
s
:
{
3
}
Convert the result to a list:
I
n
[
3
]
:
=
%
/
/
N
o
r
m
a
l
O
u
t
[
3
]
=
{
6
.
+
0
.
,
-
1
.
5
+
0
.
8
6
6
0
2
5
,
-
1
.
5
-
0
.
8
6
6
0
2
5
}
S
e
e
A
l
s
o
E
x
t
e
r
n
a
l
F
u
n
c
t
i
o
n
▪
E
x
t
e
r
n
a
l
E
v
a
l
u
a
t
e
"
"