Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
ExternalFunctions
Guides
Chemistry
External Functions
Mathematics
Symbols
AcentricFactor
DiscreteCosineTransform
DiscreteSineTransform
FastFourierTransform
InverseDiscreteCosineTransform
InverseDiscreteSineTransform
InverseFastFourierTransform
LeeKeslerOmega
LoadExternalFunction
MatrixBandwidth
StielPolarFactor
ArnoudBuzing`ExternalFunctions`
I
n
v
e
r
s
e
F
a
s
t
F
o
u
r
i
e
r
T
r
a
n
s
f
o
r
m
I
n
v
e
r
s
e
F
a
s
t
F
o
u
r
i
e
r
T
r
a
n
s
f
o
r
m
[
l
i
s
t
]
c
o
m
p
u
t
e
s
t
h
e
i
n
v
e
r
s
e
f
a
s
t
F
o
u
r
i
e
r
t
r
a
n
s
f
o
r
m
o
f
l
i
s
t
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Compute an inverse fast Fourier transform:
I
n
[
1
]
:
=
i
f
f
t
=
I
n
v
e
r
s
e
F
a
s
t
F
o
u
r
i
e
r
T
r
a
n
s
f
o
r
m
[
{
1
,
2
,
3
}
]
O
u
t
[
1
]
=
N
u
m
e
r
i
c
A
r
r
a
y
T
y
p
e
:
C
o
m
p
l
e
x
R
e
a
l
6
4
D
i
m
e
n
s
i
o
n
s
:
{
3
}
Convert the
N
u
m
e
r
i
c
A
r
r
a
y
to a
L
i
s
t
:
I
n
[
2
]
:
=
N
o
r
m
a
l
[
i
f
f
t
]
O
u
t
[
2
]
=
{
2
.
+
0
.
,
-
0
.
5
-
0
.
2
8
8
6
7
5
,
-
0
.
5
+
0
.
2
8
8
6
7
5
}
Compare to
I
n
v
e
r
s
e
F
o
u
r
i
e
r
with the given
F
o
u
r
i
e
r
P
a
r
a
m
e
t
e
r
s
:
I
n
[
3
]
:
=
I
n
v
e
r
s
e
F
o
u
r
i
e
r
[
{
1
,
2
,
3
}
,
F
o
u
r
i
e
r
P
a
r
a
m
e
t
e
r
s
{
1
,
1
}
]
O
u
t
[
3
]
=
{
2
.
+
0
.
,
-
0
.
5
+
0
.
2
8
8
6
7
5
,
-
0
.
5
-
0
.
2
8
8
6
7
5
}
S
e
e
A
l
s
o
"
"