Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ExternalFunctions

Guides

  • Chemistry
  • External Functions
  • Mathematics

Symbols

  • AcentricFactor
  • DiscreteCosineTransform
  • DiscreteSineTransform
  • FastFourierTransform
  • InverseDiscreteCosineTransform
  • InverseDiscreteSineTransform
  • InverseFastFourierTransform
  • LeeKeslerOmega
  • LoadExternalFunction
  • MatrixBandwidth
  • StielPolarFactor
ArnoudBuzing`ExternalFunctions`
InverseDiscreteCosineTransform
​
InverseDiscreteCosineTransform[list]
computes the inverse discrete cosine transform of
list
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Compute a discrete cosine transform:
In[1]:=
list={1,2,3};​​dst=
InverseDiscreteCosineTransform
[list]
Out[1]=
NumericArray
Type: Real64
Dimensions: {3}

Convert the
NumericArray
to a
List
:
In[2]:=
Normal[dst]
Out[2]=
{1.24402,-0.833333,0.0893164}
Compare to
FourierDCT
:
In[3]:=
n=Length[list];​​FourierDCT[list,3]/(2Sqrt[n])
Out[3]=
{1.24402,-0.833333,0.0893164}
SeeAlso
FourierDCT
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com