Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Bulirsch's general incomplete elliptic integral
ResourceFunction["BulirschEL"][x,m,p,a,b] gives Bulirsch's general incomplete elliptic integral . |
Evaluate numerically:
In[1]:= |
|
Out[1]= |
|
In[2]:= |
|
Out[2]= |
|
Evaluate numerically for complex arguments:
In[3]:= |
|
Out[3]= |
|
Evaluate to high precision:
In[4]:= |
|
Out[4]= |
|
The precision of the output tracks the precision of the input:
In[5]:= |
|
Out[5]= |
|
Simple exact results are generated automatically:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
BulirschEL threads elementwise over lists:
In[8]:= |
|
Out[8]= |
|
Series expansion of BulirschEL at the origin:
In[9]:= |
|
Out[9]= |
|
All incomplete elliptic integrals can be expressed in terms of BulirschEL:
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
In[12]:= |
|
Out[12]= |
|
Linear combinations of incomplete elliptic integrals can be expressed in terms of BulirschEL:
In[13]:= |
|
Out[13]= |
|
In[14]:= |
|
Out[14]= |
|
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License