Function Repository Resource:

BulirschEL

Source Notebook

Evaluate Bulirsch's general incomplete elliptic integral

Contributed by: Jan Mangaldan

ResourceFunction["BulirschEL"][x,m,p,a,b]

gives Bulirsch's general incomplete elliptic integral .

Details

Mathematical function, suitable for both symbolic and numerical manipulation.
Bulirsch’s general incomplete elliptic integral is defined as .
When x=, ResourceFunction["BulirschEL"] is referred to as a complete integral.
Argument conventions for elliptic integrals are discussed in "Elliptic Integrals and Elliptic Functions".
For certain special arguments, ResourceFunction["BulirschEL"] automatically evaluates to exact values.
ResourceFunction["BulirschEL"] can be evaluated to arbitrary precision.
ResourceFunction["BulirschEL"] automatically threads over lists.

Examples

Basic Examples (1) 

Evaluate numerically:

In[1]:=
ResourceFunction["BulirschEL"][3.4, 0.1, -4.1, 1.2, 1.1]
Out[1]=
In[2]:=
ResourceFunction["BulirschEL"][\[Infinity], 0.1, -4.1, 1.2, 1.1]
Out[2]=

Scope (5) 

Evaluate numerically for complex arguments:

In[3]:=
ResourceFunction["BulirschEL"][-1.9, 1 - 2. I, 2.5 + I, 0.6, 0.7]
Out[3]=

Evaluate to high precision:

In[4]:=
ResourceFunction["BulirschEL"][9/8, 1/2, -2.`30, 3, 4]
Out[4]=

The precision of the output tracks the precision of the input:

In[5]:=
ResourceFunction["BulirschEL"][9/8, 1/2, -2.000000000000000000000, 3,
  4]
Out[5]=

Simple exact results are generated automatically:

In[6]:=
ResourceFunction["BulirschEL"][0, m, p, a, b]
Out[6]=
In[7]:=
ResourceFunction["BulirschEL"][x, {0, 1}, 1/2, 1, 1/2]
Out[7]=

BulirschEL threads elementwise over lists:

In[8]:=
ResourceFunction["BulirschEL"][{0.2, 0.3, 0.7}, 0.9, 2.4, 1/5, 1/3]
Out[8]=

Series expansion of BulirschEL at the origin:

In[9]:=
Series[ResourceFunction["BulirschEL"][z, m, p, a, b], {z, 0, 5}]
Out[9]=

Properties and Relations (2) 

All incomplete elliptic integrals can be expressed in terms of BulirschEL:

In[10]:=
With[{\[Phi] = \[Pi]/5, m = 2/3}, N[{EllipticF[\[Phi], m], ResourceFunction["BulirschEL"][Tan[\[Phi]], 1 - m, 1, 1, 1]}]]
Out[10]=
In[11]:=
With[{\[Phi] = \[Pi]/5, m = 2/3}, N[{EllipticE[\[Phi], m], ResourceFunction["BulirschEL"][Tan[\[Phi]], 1 - m, 1, 1, 1 - m]}]]
Out[11]=
In[12]:=
With[{n = 4/5, \[Phi] = \[Pi]/5, m = 2/3}, N[{EllipticPi[n, \[Phi], m], ResourceFunction["BulirschEL"][Tan[\[Phi]], 1 - m, 1 - n, 1, 1]}]]
Out[12]=

Linear combinations of incomplete elliptic integrals can be expressed in terms of BulirschEL:

In[13]:=
With[{\[Phi] = \[Pi]/5, m = 2/3, a = 4, b = 5}, N[{a EllipticF[\[Phi], m] + b EllipticE[\[Phi], m], ResourceFunction["BulirschEL"][Tan[\[Phi]], 1 - m, 1, a + b, a + b (1 - m)]}]]
Out[13]=
In[14]:=
With[{n = 4/5, \[Phi] = \[Pi]/5, m = 2/3, a = 4, b = 5}, N[{a EllipticF[\[Phi], m] + b EllipticPi[n, \[Phi], m], ResourceFunction["BulirschEL"][Tan[\[Phi]], 1 - m, 1 - n, a + b, a (1 - n) + b]}]]
Out[14]=

Requirements

Wolfram Language 12.3 (May 2021) or above

Version History

  • 1.0.0 – 06 July 2021

Source Metadata

Related Resources

Author Notes

Requires 12.3 or later.
The form of the second argument was changed from the original definition used by Bulirsch, so that BulirschEL uses the parameter m=k2 instead of the modulus k. This conforms with Mathematica's choice to use the parameter in the built-in elliptic integrals and functions.

License Information