Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Obtain the parameters for orbital motion
ResourceFunction["OrbitalProperties"][e,M] returns the results for orbital motion given eccentricity e and mean anomaly M. | |
ResourceFunction["OrbitalProperties"][e,M,"format"] returns the results for orbital motion in the specific format. |
"Association" | (default) return the results for orbital motion |
"RelationPlot" | plot of the relation between eccentric anomaly and true anomaly |
"AngleUnit" | "AngularDegrees" | specify the angle unit used in the "Association" output form |
"LengthUnit" | "Kilometers" | specify the length unit used in the "Association" output form |
"SemimajorAxis" | Quantity[10000,"Kilometers"] | specify the value of the semimajor axis used to compute to radial position |
Results for orbital motion:
In[1]:= | ![]() |
Out[1]= | ![]() |
Specify the output form as an Association:
In[2]:= | ![]() |
Out[2]= | ![]() |
Find the relation between eccentric anomaly and true anomaly:
In[3]:= | ![]() |
Out[3]= | ![]() |
Use "AngleUnit" to specify the output angle unit in the Association form:
In[4]:= | ![]() |
Out[4]= | ![]() |
Use "LengthUnit" to specify the output length unit in the Association form:
In[5]:= | ![]() |
Out[5]= | ![]() |
Use "SemimajorAxis" to specify the value of the semimajor axis used to compute the radial position:
In[6]:= | ![]() |
Out[6]= | ![]() |
Visualize the progress of an orbiting body over 52 weeks:
In[7]:= | ![]() |
Out[7]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License