Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Molien series of a group
| ResourceFunction["MolienSeries"][gr,n,deg] computes the Molien series of the order n group gr to degree deg. | 
Molien series for the symmetric group:
| In[1]:= | ![ResourceFunction["MolienSeries"][SymmetricGroup[3], 3, 3]](https://www.wolframcloud.com/obj/resourcesystem/images/fa7/fa79c501-876e-4818-b552-eecf07b6fe2c/68aa5b2d1dcce353.png)  | 
| Out[1]= |   | 
For higher degrees:
| In[2]:= | ![Table[ResourceFunction["MolienSeries"][SymmetricGroup[7], 7, d], {d, 7}] // Column](https://www.wolframcloud.com/obj/resourcesystem/images/fa7/fa79c501-876e-4818-b552-eecf07b6fe2c/7bfc9b3bd2a14b5c.png)  | 
| Out[2]= |   | 
Molien series for the alternating group:
| In[3]:= | ![Table[ResourceFunction["MolienSeries"][AlternatingGroup[n], n, 10], {n, 7}] // Column](https://www.wolframcloud.com/obj/resourcesystem/images/fa7/fa79c501-876e-4818-b552-eecf07b6fe2c/5efecd4a4afdd1f3.png)  | 
| Out[3]= |   | 
Molien series for a permutation group:
| In[4]:= | ![ResourceFunction["MolienSeries"][
 PermutationGroup[{Cycles[{{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}}], Cycles[{{1, 2, 9, 8}, {3, 6, 7, 4}, {5, 10}}]}], 10, 8]](https://www.wolframcloud.com/obj/resourcesystem/images/fa7/fa79c501-876e-4818-b552-eecf07b6fe2c/7d99d4ff2858c226.png)  | 
| Out[4]= |   | 
This work is licensed under a Creative Commons Attribution 4.0 International License