Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the degree of entanglement between a pair of subsystems in a discrete quantum state
ResourceFunction["QuantumEntanglementMonotone"][QuantumDiscreteState[…],bipart] computes the generalized concurrence monotone for the subsystems in the bipartition bipart of the specified QuantumDiscreteState. | |
ResourceFunction["QuantumEntanglementMonotone"][QuantumDiscreteState[…],bipart,mono] computes the named entanglement monotone mono for the subsystems in the bipartition bipart of the specified QuantumDiscreteState. | |
ResourceFunction["QuantumEntanglementMonotone"][QuantumDiscreteState[…],bipart,{mono,α}] computes the named entanglement monotone mono with index α (where appropriate) for the subsystems in the bipartition bipart of the specified QuantumDiscreteState. |
"Concurrence" | generalized concurrence monotone for pure states and two-subsystem mixed states |
"Negativity" | negativity monotone for pure and mixed states (i.e. the Peres–Horodecki separability criterion) |
"LogNegativity" | logarithmic negativity monotone for pure and mixed states (i.e. the Peres–Horodecki separability criterion) |
"EntanglementEntropy" | entanglement entropy monotone for pure states (i.e. the von Neumann entropy of the reduced density matrices) |
"RenyiEntanglementEntropy" | Rényi entanglement entropy monotone with Rényi index α=1/2 for pure states (i.e. the Rényi entropy of the reduced density matrices) |
{"RenyiEntanglementEntropy",α} | Rényi entanglement entropy monotone with specified Rényi index α for pure states (i.e. the Rényi entropy of the reduced density matrices) |
Compute the generalized concurrence monotone for the first and second subsystems of a two-qubit pure discrete quantum state:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Compute the negativity and logarithmic negativity monotones instead:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Compute the entanglement entropy and Rényi entanglement entropy monotones instead:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Show that the three-qubit GHZ state is biseparable (i.e. any pair of qubits is separable):
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
However, the GHZ state is not triseparable (since every triple of qubits is maximally entangled):
In[12]:= |
Out[12]= |
Show that the three-qubit W state is not biseparable (and hence its entanglement is more robust than the GHZ state's):
In[13]:= |
Out[13]= |
Show that a QuantumDiscreteState consisting of two three-dimensional qudits is not separable:
In[14]:= |
Out[14]= |
Compute negativity and logarithmic negativity entanglement monotones for subsystems {2,3} and {5} in a random 5-qubit pure state:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
The concurrence monotone is defined for mixed states, but only for pairs of subsystems:
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
For any triple of subsystems, the concurrence monotone is undefined (returns Indeterminate):
In[20]:= |
Out[20]= |
On the other hand, the negativity and logarithmic negativity monotones are always defined for mixed states, for any collection of subsystems (of any size):
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
The entanglement entropy and Rényi entanglement entropy monotones are never defined for mixed states:
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
The Rényi entanglement entropy approaches the standard (von Neumann) entanglement entropy in the limit as α approaches 1:
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
In[27]:= |
Out[27]= |
This work is licensed under a Creative Commons Attribution 4.0 International License