Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the axis-angle representation of a three-dimensional rotation matrix
ResourceFunction["AxisAngle"][mat] gives the axis-angle representation of a 3D rotation matrix mat. |
Generate a rotation matrix from its axis-angle representation:
In[1]:= |
Out[1]= |
Reconstitute the axis-angle representation from the matrix:
In[2]:= |
Out[2]= |
Use Activate to see the matrix again:
In[3]:= |
Out[3]= |
A real matrix:
In[4]:= |
Out[4]= |
Its axis-angle:
In[5]:= |
Out[5]= |
An approximate MachinePrecision matrix:
In[6]:= |
Out[6]= |
Its axis-angle:
In[7]:= |
Out[7]= |
An approximate arbitrary precision matrix:
In[8]:= |
Out[8]= |
Its axis-angle:
In[9]:= |
Out[9]= |
Generate a matrix from a given set of Euler angles:
In[10]:= |
Out[10]= |
Convert to its axis-angle representation:
In[11]:= |
Out[11]= |
Verify that they give the same rotation matrix:
In[12]:= |
Out[12]= |
Generate a matrix from a given set of roll-pitch-yaw angles:
In[13]:= |
Out[13]= |
Convert to its axis-angle representation:
In[14]:= |
Out[14]= |
Verify that they give the same rotation matrix:
In[15]:= |
Out[15]= |
Generate a random rotation matrix:
In[16]:= |
Out[16]= |
Convert to its axis-angle representation:
In[17]:= |
Out[17]= |
AxisAngle is effectively the inverse of RotationMatrix:
In[18]:= |
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
For singular rotation matrices, the choice of axis returned is arbitrary:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
Generate two random unit vectors:
In[25]:= |
Out[25]= |
Find the axis-angle representation of the matrix that transforms one vector to the other:
In[26]:= |
Out[26]= |
Verify the result:
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
In[29]:= |
Out[29]= |
Here are two polygons:
In[30]:= |
Use FindGeometricTransform to find a rigid transformation between the two:
In[31]:= |
Out[31]= |
Extract the rotation matrix:
In[32]:= |
Out[32]= |
Convert the rotation matrix to its axis-angle representation:
In[33]:= |
Out[33]= |
This work is licensed under a Creative Commons Attribution 4.0 International License