Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lah number
ResourceFunction["LahL"][n,m] gives the Lah number L(n,m). |
Evaluate some Lah numbers:
| In[1]:= |
| Out[1]= |
LahL threads elementwise over lists:
| In[2]:= |
| Out[2]= |
Plot Lah numbers on a logarithmic scale:
| In[3]:= |
| Out[3]= | ![]() |
Express Pochhammer as a linear combination of FactorialPower:
| In[4]:= | ![]() |
| Out[4]= |
Express FactorialPower as a linear combination of Pochhammer:
| In[5]:= | ![]() |
| Out[5]= |
Closed form of derivatives of ⅇ1/x:
| In[6]:= |
| Out[6]= |
| In[7]:= | ![]() |
| Out[7]= |
Generate values from the generating function:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Lah numbers can be expressed in terms of Stirling numbers of both kinds:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
Lah numbers are given by a partial Bell polynomial with factorial arguments:
| In[12]:= |
| Out[12]= |
| In[13]:= |
| Out[13]= |
This work is licensed under a Creative Commons Attribution 4.0 International License