Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Faddeeva function
ResourceFunction["FaddeevaW"][z] gives the Faddeeva function w(z). |
Evaluate the Faddeeva function numerically:
| In[1]:= |
| Out[1]= |
Plot the real and imaginary parts over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Plot over a subset of the complexes:
| In[3]:= |
| Out[3]= | ![]() |
Series expansion at the origin:
| In[4]:= |
| Out[4]= |
Evaluate for complex arguments:
| In[5]:= |
| Out[5]= |
Evaluate to high precision:
| In[6]:= |
| Out[6]= |
The precision of the output tracks the precision of the input:
| In[7]:= |
| Out[7]= |
FaddeevaW threads elementwise over lists:
| In[8]:= |
| Out[8]= |
Simple exact values are generated automatically:
| In[9]:= |
| Out[9]= |
Visualize the altitude chart for w(z):
| In[10]:= | ![]() |
| Out[10]= | ![]() |
Compare FaddeevaW with its integral representation:
| In[11]:= | ![]() |
| Out[11]= |
Verify reflection properties of FaddeevaW:
| In[12]:= |
| Out[12]= |
| In[13]:= |
| Out[13]= |
Derivatives of FaddeevaW can be expressed in terms of FaddeevaW:
| In[14]:= |
| Out[14]= |
DawsonF can be expressed in terms of FaddeevaW:
| In[15]:= |
| Out[15]= |
FresnelF and FresnelG can be expressed in terms of FaddeevaW:
| In[16]:= |
| Out[16]= |
The PDF of VoigtDistribution can be expressed in terms of FaddeevaW:
| In[17]:= | ![]() |
| Out[17]= |
Very large arguments can fail to produce results:
| In[18]:= |
| Out[18]= |
This work is licensed under a Creative Commons Attribution 4.0 International License