Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Faddeeva function
ResourceFunction["FaddeevaW"][z] gives the Faddeeva function w(z). |
Evaluate the Faddeeva function numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot the real and imaginary parts over a subset of the reals:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot over a subset of the complexes:
In[3]:= | ![]() |
Out[3]= | ![]() |
Series expansion at the origin:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate for complex arguments:
In[5]:= | ![]() |
Out[5]= | ![]() |
Evaluate to high precision:
In[6]:= | ![]() |
Out[6]= | ![]() |
The precision of the output tracks the precision of the input:
In[7]:= | ![]() |
Out[7]= | ![]() |
FaddeevaW threads elementwise over lists:
In[8]:= | ![]() |
Out[8]= | ![]() |
Simple exact values are generated automatically:
In[9]:= | ![]() |
Out[9]= | ![]() |
Visualize the altitude chart for w(z):
In[10]:= | ![]() |
Out[10]= | ![]() |
Compare FaddeevaW with its integral representation:
In[11]:= | ![]() |
Out[11]= | ![]() |
Verify reflection properties of FaddeevaW:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Derivatives of FaddeevaW can be expressed in terms of FaddeevaW:
In[14]:= | ![]() |
Out[14]= | ![]() |
DawsonF can be expressed in terms of FaddeevaW:
In[15]:= | ![]() |
Out[15]= | ![]() |
FresnelF and FresnelG can be expressed in terms of FaddeevaW:
In[16]:= | ![]() |
Out[16]= | ![]() |
The PDF of VoigtDistribution can be expressed in terms of FaddeevaW:
In[17]:= | ![]() |
Out[17]= | ![]() |
Very large arguments can fail to produce results:
In[18]:= | ![]() |
Out[18]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License