Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Faddeeva function
ResourceFunction["FaddeevaW"][z] gives the Faddeeva function w(z). |
Evaluate the Faddeeva function numerically:
In[1]:= |
Out[1]= |
Plot the real and imaginary parts over a subset of the reals:
In[2]:= |
Out[2]= |
Plot over a subset of the complexes:
In[3]:= |
Out[3]= |
Series expansion at the origin:
In[4]:= |
Out[4]= |
Evaluate for complex arguments:
In[5]:= |
Out[5]= |
Evaluate to high precision:
In[6]:= |
Out[6]= |
The precision of the output tracks the precision of the input:
In[7]:= |
Out[7]= |
FaddeevaW threads elementwise over lists:
In[8]:= |
Out[8]= |
Simple exact values are generated automatically:
In[9]:= |
Out[9]= |
Visualize the altitude chart for w(z):
In[10]:= |
Out[10]= |
Compare FaddeevaW with its integral representation:
In[11]:= |
Out[11]= |
Verify reflection properties of FaddeevaW:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
Derivatives of FaddeevaW can be expressed in terms of FaddeevaW:
In[14]:= |
Out[14]= |
DawsonF can be expressed in terms of FaddeevaW:
In[15]:= |
Out[15]= |
FresnelF and FresnelG can be expressed in terms of FaddeevaW:
In[16]:= |
Out[16]= |
The PDF of VoigtDistribution can be expressed in terms of FaddeevaW:
In[17]:= |
Out[17]= |
Very large arguments can fail to produce results:
In[18]:= |
Out[18]= |
This work is licensed under a Creative Commons Attribution 4.0 International License