Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Determine the value of an integral using a numerical method
ResourceFunction["NumericalIntegralApproximation"][f,{x,xmin,xmax},method] gives a numerical approximation to the integral using the specified method. |
"Midpoint" | midpoint rule |
"RightHand" | right Riemann sum |
"LeftHand" | left Riemann sum |
"Simpson" | Simpson's rule |
"Trapezoidal" | trapezoidal rule |
"Boole" | Boole's rule |
"Intervals" | Automatic | the number of subintervals to divide the integral into |
WorkingPrecision | MachinePrecision | the precision used in internal computations |
Integrate expressions using classic numerical methods such as Simpson’s rule:
In[1]:= |
Out[1]= |
Compare left hand, right hand, and midpoint integrations:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Compute integrals with "Trapezoidal" or "Boole" rules:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Increase accuracy by using multiple intervals:
In[7]:= |
Out[7]= |
Examine how increasing the number of intervals affects the result:
In[8]:= |
In[9]:= |
Out[9]= |
Compare the results to the exact answer:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
This work is licensed under a Creative Commons Attribution 4.0 International License