Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Dedekind psi function
ResourceFunction["DedekindPsi"][n] gives the Dedekind psi function ψ(n). | |
ResourceFunction["DedekindPsi"][k,n] gives the generalized Dedekind psi function ψk(n). |
Evaluate ψ(3):
| In[1]:= |
| Out[1]= |
Evaluate ψ(2,8):
| In[2]:= |
| Out[2]= |
Plot ψ(k,n) for several values of k on a logarithmic scale:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
DedekindPsi threads elementwise over lists for either argument:
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
Obtain a symbolic expression for arbitrary order k:
| In[7]:= |
| Out[7]= |
| In[8]:= |
| Out[8]= |
DedekindPsi[k,n] remains unevaluated for symbolic n:
| In[9]:= |
| Out[9]= |
Now specify a value:
| In[10]:= |
| Out[10]= |
The Dirichlet transform of DedekindPsi can be expressed in terms of Zeta:
| In[11]:= |
| Out[11]= |
The average order of DedekindPsi[n] is
:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
DedekindPsi[k,n] can be expressed as a quotient of Jordan’s generalized totients
:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
DedekindPsi[k,n] is a multiplicative function:
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= |
If n is squarefree, DedekindPsi[k,n] = DivisorSigma[k,n]:
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= |
When the order is zero, all terms in the defining product degenerate to 2, i.e. DedekindPsi[0,n] degenerates to 2^PrimeNu[n]:
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
DedekindPsi[k,n] can be expressed as μ(n)2⋆nk where ⋆ is DirichletConvolve:
| In[23]:= |
| Out[23]= |
| In[24]:= |
| Out[25]= |
However, for large n, this calculation is slower:
| In[26]:= |
| Out[27]= |
DedekindPsi[0] is undefined:
| In[28]:= |
| Out[28]= |
Plot the Ulam spiral where numbers are colored based on the values of DedekindPsi:
| In[29]:= | ![]() |
| Out[30]= | ![]() |
Verify that small Mersenne primes p satisfy ψ(2(ψ(n)−n)-1)=n where n=p+1:
| In[31]:= |
| Out[31]= | ![]() |
| In[32]:= |
| Out[32]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License