Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the skew-tridiagonal decomposition of an antisymmetric matrix
ResourceFunction["SkewTridiagonalDecomposition"][m] gives the skew-tridiagonal decomposition of antisymmetric matrix m. |
Construct a a skew-symmetric matrix:
In[1]:= |
Out[1]= |
The skew-tridiagonal decomposition:
In[2]:= |
In[3]:= |
Out[3]= |
The skew-tridiagonal decomposition of a real antisymmetric matrix:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
The skew-tridiagonal decomposition of a complex antisymmetric matrix:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Compute the Pfaffian of an antisymmetric matrix by reducing it to the tridiagonal form:
In[8]:= |
Out[8]= |
In[9]:= |
In[10]:= |
Out[10]= |
In[11]:= |
In[12]:= |
Out[12]= |
Compare with the result of the resource function Pfaffian:
In[13]:= |
Out[13]= |
In the result of {q,t}=SkewTridiagonalDecomposition[m], the matrix q is unitary and t is tridiagonal:
In[14]:= |
In[15]:= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
The original matrix is given by q.t.Transpose[q]:
In[18]:= |
Out[18]= |
For real matrices, SkewTridiagonalDecomposition gives result similar to HessenbergDecomposition:
In[19]:= |
In[20]:= |
In[21]:= |
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
The resource function SkewLTLDecomposition also produces a tridiagonal matrix t with the same Pfaffian, possibly up to the sign:
In[24]:= |
In[25]:= |
In[26]:= |
Out[26]= |
In[27]:= |
In[28]:= |
Out[28]= |
In[29]:= |
Out[29]= |
This work is licensed under a Creative Commons Attribution 4.0 International License