Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the asymptotes to a given curve in two dimensions
ResourceFunction["Asymptotes"][expr,x,y] finds the asymptotes of the expression expr in terms of independent variable x and dependent variable y. | |
ResourceFunction["Asymptotes"][expr,x,y,type] finds the asymptotes of expr whose type matches the string argument type. |
Compute the asymptotes of a decaying exponential:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= | ![]() |
Compute the asymptotes of a hyperbola:
| In[3]:= |
| Out[3]= |
| In[4]:= | ![]() |
| Out[4]= | ![]() |
Compute the asymptotes of a rational function:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= | ![]() |
Compute only the oblique asymptotes of the previous function:
| In[7]:= |
| Out[7]= |
Compute the asymptotes of a periodic function:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= | ![]() |
Compute the asymptotes of an algebraic function:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= | ![]() |
Compute a list of all asymptotes of the previous function:
| In[12]:= |
| Out[12]= |
Compute the asymptotes of another algebraic function:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= | ![]() |
Compute the asymptotes of a transcendental function:
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= | ![]() |
Implicitly defined curves can be specified using an expression with head Equal in the first argument:
| In[17]:= |
| Out[17]= |
| In[18]:= |
| Out[18]= |
In certain cases, parabolic asymptotes may be returned:
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= | ![]() |
| In[21]:= |
| Out[21]= |
| In[22]:= | ![]() |
| Out[22]= | ![]() |
| In[23]:= |
| Out[23]= |
| In[24]:= | ![]() |
| Out[24]= | ![]() |
| In[25]:= |
| Out[25]= |
| In[26]:= |
| Out[26]= | ![]() |
Asymptotes found that are neither linear or parabolic are classified as "Other":
| In[27]:= |
| Out[27]= |
| In[28]:= | ![]() |
| Out[28]= | ![]() |
| In[29]:= |
| Out[29]= |
| In[30]:= |
| Out[30]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License