Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Weber parabolic cylinder function V
ResourceFunction["ParabolicCylinderV"][a,z] gives the Weber parabolic cylinder function V(a,z). |
Evaluate numerically:
In[1]:= |
|
Out[1]= |
|
Plot :
In[2]:= |
|
Out[2]= |
|
Series expansion at the origin:
In[3]:= |
|
Out[3]= |
|
Evaluate for complex arguments and parameters:
In[4]:= |
|
Out[4]= |
|
Evaluate to high precision:
In[5]:= |
|
Out[5]= |
|
The precision of the output tracks the precision of the input:
In[6]:= |
|
Out[6]= |
|
Simple exact input gives exact results:
In[7]:= |
|
Out[7]= |
|
ParabolicCylinderV threads elementwise over lists:
In[8]:= |
|
Out[8]= |
|
ParabolicCylinderV satisfies the Weber differential equation:
In[9]:= |
|
Out[9]= |
|
A recurrence relation satisfied by ParabolicCylinderV:
In[10]:= |
|
Out[10]= |
|
Verify an expression for the derivative:
In[11]:= |
|
Out[11]= |
|
Express ParabolicCylinderV in terms of ParabolicCylinderU:
In[12]:= |
|
Out[12]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License