Function Repository Resource:

GlobalMinima

Source Notebook

Compute the global minima of an expression with respect to the given variables

Contributed by: Wolfram|Alpha Math Team

ResourceFunction["GlobalMinima"][expr,x]

computes the global minima of expr with respect to x.

ResourceFunction["GlobalMinima"][expr,{x,y,}]

computes the global minima of expr with respect to multiple variables.

ResourceFunction["GlobalMinima"][{expr,const},{x,y,}]

computes the global minima of expr subject to the constraint const.

Details and Options

ResourceFunction["GlobalMinima"] returns a list with each minimum in the form {fmin,{xxmin,yymin,}}.
The const can contain equations, inequalities or logical combinations of these.
ResourceFunction["GlobalMinima"] only returns results when there is a bounded minimum.

Examples

Basic Examples (2) 

Compute the global minima of a polynomial:

In[1]:=
ResourceFunction["GlobalMinima"][x^2 (x + 2) (x - 2), x]
Out[1]=

Plot them:

In[2]:=
Plot[x^2 (x + 2) (x - 2), {x, -3, 3}, Epilog -> {
Directive[Red, 
PointSize[Large]], 
Point[{-Sqrt[2], -4}], 
Point[{
Sqrt[2], -4}]}]
Out[2]=

Scope (2) 

Use a constraint in order to reduce the domain upon which minima can be found:

In[3]:=
ResourceFunction["GlobalMinima"][{Sin[x], 0 < x < 4 Pi}, x]
Out[3]=

Compute the minima of a function of two variables:

In[4]:=
ResourceFunction["GlobalMinima"][( x^2 + y^2 - 4)^2, {x, y}]
Out[4]=

Possible Issues (1) 

GlobalMinima may return duplicate results for periodic functions:

In[5]:=
ResourceFunction["GlobalMinima"][Sin[x], x]
Out[5]=

Publisher

Wolfram|Alpha Math Team

Version History

  • 2.0.0 – 23 March 2023
  • 1.0.0 – 18 September 2020

Related Resources

Author Notes

To view the full source code for GlobalMaxima, run the following code:

In[1]:=
FileNameJoin[
  ReplacePart[
   FileNameSplit[FindFile["ResourceFunctionHelpers`"]], -1 -> "FindExtrema.wl"]] // SystemOpen

License Information