Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the inverse of a tridiagonal matrix
ResourceFunction["TridiagonalInverse"][a,b,c] gives the inverse of the tridiagonal matrix with subdiagonal a, diagonal b and superdiagonal c. |
The inverse of a 3×3 tridiagonal matrix:
| In[1]:= |
| Out[1]= | ![]() |
Multiply with the original tridiagonal matrix:
| In[2]:= | ![]() |
| Out[2]= |
TridiagonalInverse can be used with numerical entries:
| In[3]:= |
| Out[3]= | ![]() |
| In[4]:= |
| Out[4]= | ![]() |
Construct a natural cubic spline interpolant to data:
| In[5]:= | ![]() |
| Out[5]= |
Plot the interpolant along with the data:
| In[6]:= |
| Out[6]= | ![]() |
Approximately solve the boundary value problem u{XMLElement[span, {class -> stylebox}, {x, XMLElement[i, {class -> ti}, {x}]}]}+u=f;u(0)=u(1)=0:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Show the error compared with the exact solution:
| In[8]:= |
| Out[8]= | ![]() |
TridiagonalInverse can be faster than using Inverse on a tridiagonal matrix constructed with SparseArray and Band:
| In[9]:= | ![]() |
| In[10]:= |
| Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License