Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find explicit sets of rules for computational systems
ResourceFunction["ComputationalSystemRules"][sys] returns an explicit set of rules for the computational system sys. |
CellularAutomaton[spec] | cellular automaton |
TuringMachine[spec] | Turing machine |
SubstitutionSystem[spec] | substitution system |
BooleanFunction[spec] | Boolean function |
Get the explicit set of rules for a cellular automaton:
In[1]:= |
|
Out[1]= |
|
Evolution of the system specified by the explicit rules:
In[2]:= |
|
Out[2]= |
|
Compare with the canonical representation of the same system:
In[3]:= |
|
Out[3]= |
|
Explicit rules for a Turing machine:
In[4]:= |
|
Out[4]= |
|
Both representations yield the same evolution:
In[5]:= |
|
Out[5]= |
|
Boolean function in two variables:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
String substitution system:
In[8]:= |
|
In[9]:= |
|
Out[9]= |
|
An evolution step:
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
In[12]:= |
|
Out[12]= |
|
Various forms of cellular automata, including elementary rules:
In[13]:= |
|
Out[13]= |
|
Multi-color rules:
In[14]:= |
|
Out[14]= |
|
Neighborhood rules:
In[15]:= |
|
Out[15]= |
|
Rules specified using an association:
In[16]:= |
|
Out[16]= |
|
In[17]:= |
|
Out[17]= |
|
Turing machine rule 2506:
In[18]:= |
|
Out[18]= |
|
Turing machine with more than two colors:
In[19]:= |
|
Out[19]= |
|
In[20]:= |
|
Out[20]= |
|
ComputationalSystemRules does not parse system specifications beyond those acceptable to RulePlot:
In[21]:= |
|
In[22]:= |
|
Out[22]= |
|
In[23]:= |
|
Out[23]= |
|
Use a system that can be handled by RulePlot:
In[24]:= |
|
In[25]:= |
|
Out[25]= |
|
In[26]:= |
|
Out[26]= |
|
ComputationalSystemRules does not handle totalistic cellular automata:
In[27]:= |
|
Out[27]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License