Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find a numerical approximation for a Fourier cosine coefficient of a function
ResourceFunction["NFourierCosCoefficient"][expr,t,n] gives a numerical approximation to the nth coefficient in the Fourier cosine series expansion of expr. |
Calculate a numerical approximation to a Fourier cosine coefficient:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compare with the answer from symbolic evaluation:
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
Repeat the calculation, using a different definition for the Fourier cosine transform:
In[4]:= | ![]() |
Out[4]= | ![]() |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License