Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate a fractional derivative
| ResourceFunction["FractionalD"][f,{x,α}] gives the fractional derivative  | 
 .
. .
.Half-derivative of x2:
| In[1]:= | ![ResourceFunction["FractionalD"][x^2, {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/495c8c2103e7451d.png) | 
| Out[1]= |  | 
Taking the half-derivative twice yields the usual first derivative:
| In[2]:= | ![ResourceFunction["FractionalD"][
 ResourceFunction["FractionalD"][x^2, {x, 1/2}], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/7b8d28b699fb8e8c.png) | 
| Out[2]= |  | 
If α is an integer, the result is the normal derivative:
| In[3]:= | ![ResourceFunction["FractionalD"][Sin[x], {x, 3}] == D[Sin[x], {x, 3}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/16fa77c1ca97ae73.png) | 
| Out[3]= |  | 
Half-derivative of elementary functions:
| In[4]:= | ![ResourceFunction["FractionalD"][x^a, {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/73cd028e063c5c82.png) | 
| Out[4]= |  | 
| In[5]:= | ![ResourceFunction["FractionalD"][Exp[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/16dd437c5a83fc39.png) | 
| Out[5]= |  | 
| In[6]:= | ![ResourceFunction["FractionalD"][Log[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/6ec5230d27a425e5.png) | 
| Out[6]= |  | 
Half-derivative of trig functions:
| In[7]:= | ![ResourceFunction["FractionalD"][Sin[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/1435bc41401bf5b5.png) | 
| Out[7]= |  | 
| In[8]:= | ![ResourceFunction["FractionalD"][Cos[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/52b6a7ef8552d64f.png) | 
| Out[8]= |  | 
Half-derivative of inverse trig functions:
| In[9]:= | ![ResourceFunction["FractionalD"][ArcSin[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/054e3870003e41b4.png) | 
| Out[9]= |  | 
| In[10]:= | ![ResourceFunction["FractionalD"][ArcCos[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/7eddfabdcfcd8e84.png) | 
| Out[10]= |  | 
A more exotic fractional derivative:
| In[11]:= | ![ResourceFunction["FractionalD"][FresnelC[x], {x, 2/3}] // FullSimplify](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/056b90c277e1f266.png) | 
| Out[11]= |  | 
Choosing between Cauchy and Caputo may result in performance differences:
| In[12]:= | ![ResourceFunction["FractionalD"][Sin[x], {x, 1/2}, Method -> "Cauchy"] // Timing](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/325faab4b752c8a9.png) | 
| Out[12]= |  | 
| In[13]:= | ![ResourceFunction["FractionalD"][Sin[x], {x, 1/2}, Method -> "Caputo"] // Timing](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/593b559468ce493f.png) | 
| Out[13]= |  | 
FractionalD uses integration under the hood. Sometimes the integral cannot be computed:
| In[14]:= | ![ResourceFunction["FractionalD"][Tan[x], {x, 1/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/3cecd234c5828a08.png) | 
| Out[14]= |  | 
The fractional derivative smoothly interpolates between the function and its derivative:
| In[15]:= | ![Manipulate[
 Plot[{x^2, 2 x, Evaluate@ResourceFunction["FractionalD"][x^2, {x, m}]}, {x, 0, 1}], {m, 0.001, 0.999}]](https://www.wolframcloud.com/obj/resourcesystem/images/d48/d48c8634-d8e2-491c-8cd3-3d3463f97dec/7c77e4f04cae40db.png) | 
| Out[15]= |  | 
This work is licensed under a Creative Commons Attribution 4.0 International License