Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Bulirsch's general complete elliptic integral
ResourceFunction["BulirschCEL"][m,p,a,b] gives Bulirsch's general complete elliptic integral |
Evaluate numerically:
| In[1]:= |
|
| Out[1]= |
|
Evaluate numerically for complex arguments:
| In[2]:= |
|
| Out[2]= |
|
Evaluate to high precision:
| In[3]:= |
|
| Out[3]= |
|
The precision of the output tracks the precision of the input:
| In[4]:= |
|
| Out[4]= |
|
Simple exact results are generated automatically:
| In[5]:= |
|
| Out[5]= |
|
| In[6]:= |
|
| Out[6]= |
|
BulirschCEL threads elementwise over lists:
| In[7]:= |
|
| Out[7]= |
|
Evaluate the mutual inductance of two coaxial circles:
| In[8]:= |
|
| Out[8]= |
|
Compare with the result of NIntegrate:
| In[9]:= |
|
| Out[9]= |
|
Visualize the solid angle subtended by a circular disk:
| In[10]:= |
|
| Out[10]= |
|
Evaluate the solid angle:
| In[11]:= |
|
| Out[11]= |
|
Compare with the result of NIntegrate:
| In[12]:= |
|
| Out[12]= |
|
Visualize the intersection of two cylinders:
| In[13]:= |
|
| Out[13]= |
|
Compute the volume of the intersection of two cylinders:
| In[14]:= |
|
| Out[14]= |
|
Compare with the result of Volume:
| In[15]:= |
|
| Out[15]= |
|
Complete Legendre-Jacobi elliptic integrals of all three kinds can be expressed in terms of BulirschCEL:
| In[16]:= |
|
| Out[16]= |
|
| In[17]:= |
|
| Out[17]= |
|
| In[18]:= |
|
| Out[18]= |
|
BulirschCEL can be used to represent linear combinations of complete elliptic integrals:
| In[19]:= |
|
| Out[19]= |
|
| In[20]:= |
|
| Out[20]= |
|
JacobiZeta can be expressed in terms of BulirschCEL:
| In[21]:= |
|
| Out[21]= |
|
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License