Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the product integral of a function
ResourceFunction["ProductIntegrate"][f,x] gives the indefinite product integral   | |
ResourceFunction["ProductIntegrate"][f,{x,xmin,xmax}] gives the definite product integral   | 
Indefinite product integral of an exponential function:
| In[1]:= | 
| Out[1]= | 
Definite product integral of an exponential function:
| In[2]:= | 
| Out[2]= | 
Evaluate the indefinite product integral of a power function:
| In[3]:= | 
| Out[3]= | 
Use Assuming to get a simpler expression:
| In[4]:= | 
| Out[4]= | 
This is the same as using the Assumptions option:
| In[5]:= | 
| Out[5]= | 
By default, conditions are generated on parameters that guarantee convergence:
| In[6]:= | 
| Out[6]= | 
With Assumptions, a result valid under the given assumptions is given:
| In[7]:= | 
| Out[7]= | 
Evaluate the indefinite product integral of a linear function:
| In[8]:= | 
| Out[8]= | 
Use the fundamental theorem of product calculus:
| In[9]:= | 
| Out[9]= | 
This is the same as directly evaluating a definite product integral:
| In[10]:= | 
| Out[10]= | 
ProductIntegrate is the inverse of the resource function ProductD, under certain conditions:
| In[11]:= | 
| Out[11]= | 
| In[12]:= | 
| Out[12]= | 
ProductIntegrate uses Integrate internally, and if the underlying Integrate fails to evaluate, the expression is left unevaluated:
| In[13]:= | 
| Out[13]= | 
This work is licensed under a Creative Commons Attribution 4.0 International License