Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the normal curvature of a curve on a surface
ResourceFunction["NormalCurvature"][s,c,{u,v},t] computes the normal curvature of the plane curve c with respect to variable t over the surface s parameterized by u and v.  | 
A sphere:
| In[1]:= | 
       | 
    
Normal curvature of the sphere:
| In[2]:= | 
       | 
    
| In[3]:= | 
       | 
    
A hyperbolic paraboloid:
| In[4]:= | 
       | 
    
A normal section of the hyperbolic paraboloid:
| In[5]:= | 
       | 
    
Plot of the normal sections of the hyperbolic paraboloid:
| In[6]:= | 
       
       | 
    
| Out[6]= | 
       
       | 
    
The normal curvature:
| In[7]:= | 
       | 
    
| Out[7]= | 
       | 
    
The change in direction happens when the curvature crosses zero:
| In[8]:= | 
       
       | 
    
| Out[8]= | 
       | 
    
Choose c1 to get zeros in the interval (0,π):
| In[9]:= | 
       | 
    
| Out[9]= | 
       | 
    
The principal curvatures:
| In[10]:= | 
       | 
    
| Out[10]= | 
       
       | 
    
The maximum and minimum values of the normal curvature are the principal curvatures:
| In[11]:= | 
       | 
    
| Out[11]= | 
       | 
    
The normal curvature when t=0:
| In[12]:= | 
       | 
    
| Out[12]= | 
       | 
    
The normal curvature varying φ (principal curvatures have opposite signs in a hyperbolic point):
| In[13]:= | 
       
       | 
    
| Out[13]= | 
       
       | 
    
The asymptotic directions correspond to the angles for the zeros:
| In[14]:= | 
       | 
    
| Out[14]= | 
       | 
    
In these directions, the normal curvature vanishes:
| In[15]:= | 
       | 
    
| Out[15]= | 
       | 
    
Plot the principal directions and the principal curves:
| In[16]:= | 
       
       | 
    
| Out[16]= | 
       
       | 
    
The normal sections and the normal curvature:
| In[17]:= | 
       
       | 
    
| Out[17]= | 
       
       | 
    
A cylinder:
| In[18]:= | 
       | 
    
| Out[18]= | 
       | 
    
The normal curvature:
| In[19]:= | 
       | 
    
| Out[19]= | 
       | 
    
Computing the normal curvature manually, first find the derivatives:
| In[20]:= | 
       | 
    
| Out[20]= | 
       | 
    
Derive again when t=0:
| In[21]:= | 
       | 
    
| Out[21]= | 
       | 
    
The dot product with the unit normal gives:
| In[22]:= | 
       | 
    
| Out[22]= | 
       | 
    
Another way to compute the normal curvature using the principal curvatures:
| In[23]:= | 
       | 
    
| Out[23]= | 
       | 
    
This work is licensed under a Creative Commons Attribution 4.0 International License