Function Repository Resource:

IntegerSpectralDecomposition

Source Notebook

Determine the spectral decomposition of an integer in a modular number system

Contributed by: Nikolay Murzin

ResourceFunction["IntegerSpectralDecomposition"][c,h]

gives coefficients of the integer c in the spectral basis of h.

Details and Options

Examples

Basic Examples (2) 

The spectral decomposition of 7 in 12:

In[1]:=
ResourceFunction["IntegerSpectralDecomposition"][7, 12]
Out[1]=

The spectral decomposition of -7 in 15:

In[2]:=
ResourceFunction["IntegerSpectralDecomposition"][-7, 15]
Out[2]=

Properties and Relations (2) 

Reconstruct an integer modulo another integer from its spectral decomposition using ChineseRemainder:

In[3]:=
Mod[ChineseRemainder[
  ResourceFunction["IntegerSpectralDecomposition"][11, 1337], Power @@@ FactorInteger[1337]], 1337]
Out[3]=

Reconstruct an integer modulo another integer from its spectral decomposition and spectral basis, the latter of which is computed by the resource function IntegerSpectralBasis:

In[4]:=
Mod[ResourceFunction["IntegerSpectralDecomposition"][11, 1337] . ResourceFunction["IntegerSpectralBasis"][1337], 1337]
Out[4]=

Publisher

N. Murzin

Version History

  • 1.0.0 – 18 March 2020

Source Metadata

Related Resources

License Information