Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get a count of Young tableaux for a given size or shape
ResourceFunction["NumberOfTableaux"][t] returns the number of Young tableaux with shape t, where the shape is a decreasing integer partition. | |
ResourceFunction["NumberOfTableaux"][n] returns the total number of Young tableaux for all decreasing integer partitions of n. |
![]() | Young diagram of Young tableau {{1,2,4},{3,5}}, English notation |
![]() | Young diagram of Young tableau {{1,2,4},{3,5}}, French notation |
![]() | Ferrers diagrams of Young tableau {{1,2,4},{3,5}} |
{{1,2,4},{3,5}} | Young tableau with shape {3,2} |
Count the tableaux with shape {3,2}:
In[1]:= | ![]() |
Out[1]= | ![]() |
Find the integer partitions of 6:
In[2]:= | ![]() |
Out[2]= | ![]() |
Using the partitions as shapes, find the tableaux count for each shape:
In[3]:= | ![]() |
Out[3]= | ![]() |
Calculate the total:
In[4]:= | ![]() |
Out[4]= | ![]() |
Find the number of tableaux with order 6:
In[5]:= | ![]() |
Out[5]= | ![]() |
Determine the shape of an order-15 tableau:
In[6]:= | ![]() |
Out[6]= | ![]() |
Count tableaux with that shape:
In[7]:= | ![]() |
Out[7]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License