Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generalized Gell-Mann matrix
ResourceFunction["GellMannMatrix"][n,i] returns generalized ith Gell-Mann matrix of dimension n. | |
ResourceFunction["GellMannMatrix"][n] returns all n2-1 Gell-Mann matrices of dimension n. |
| Automatic | automatically choose the representation returned |
| "Dense" | represent the matrix as a dense array |
| "Sparse" | represent the matrix as a sparse array |
| "Structured" | represent the matrix as a structured array |
Construct generalized Gell-Mann matrices for n=4:
| In[1]:= |
| Out[1]= | ![]() |
Construct the first generalized Gell-Mann matrices for n=5:
| In[2]:= |
| Out[2]= | ![]() |
Gell-Mann matrices are generator of SU(2):
| In[3]:= |
| Out[3]= |
The standard Gell-Mann matrices are 8 generators of SU(3):
| In[4]:= |
| Out[4]= | ![]() |
Gell-Mann matrices are given as sparse arrays by default:
| In[5]:= |
| Out[5]= |
Use the option TargetStructure to get them in different formats:
| In[6]:= |
| Out[6]= | ![]() |
Gell-Mann matrices of dimension 2 are the Pauli matrices:
| In[7]:= |
| Out[7]= |
Number of generalized Gell-Mann matrices is n2-1:
| In[8]:= |
| Out[8]= |
Gell-Mann matrices are Hermitian
:
| In[9]:= |
| Out[9]= |
The matrices ⅈλi are anti-Hermitian:
| In[10]:= |
| Out[10]= |
Gell-Mann matrices are traceless Tr[λa]=0:
| In[11]:= |
| Out[11]= |
Gell-Mann matrices form an orthonormal set with respect to the Hilbert-Schmidt inner product, ie Tr[λiλj]=2δij:
| In[12]:= | ![]() |
| Out[14]= |
Find the structure constants:
![]()
| In[15]:= | ![]() |
![]()
| In[16]:= |
Verify symmetric and antisymmetric features of structure constants:
| In[17]:= |
| Out[17]= |
| In[18]:= |
| Out[18]= |
Verify[λi,λj]=2ⅈ∑kfijkλk:
| In[19]:= | ![]() |
| Out[16]= |
Verify
:
| In[20]:= | ![]() |
| Out[17]= |
Verify product rule
:
| In[21]:= | ![]() |
| Out[18]= |
Verify quadratic Casimir (fundamental rep)
:
| In[22]:= | ![]() |
| Out[16]= |
The second argument should be a positive integer less than n2-1 for n the first argument:
| In[23]:= |
| Out[23]= |
The first argument n should be positive integer and the 2nd argument a positive integer less than n2-1 for n the first argument:
| In[24]:= |
| Out[24]= |
| In[25]:= |
| Out[25]= |
Possible settings for TargetStructure for constructing matrices include Automatic, "Dense", "Sparse", and "Structured":
| In[26]:= |
| Out[26]= |
This work is licensed under a Creative Commons Attribution 4.0 International License