Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Search numerically for the values of parameters of a trial function that extremize a functional
ResourceFunction["NVariationalBound"][f,u[x],{x,xmin,xmax},ut,{a,a0},{b,b0},…] numerically searches for values of the parameters a,b,… of a trial function ut, starting from a=a0,b=b0,…, that extremize the functional , where the integrand f is a function of u, its derivatives and x. | |
ResourceFunction["NVariationalBound"][f,u[x,y,…],{{x,xmin,xmax},…},ut,{a,a0},{b,b0},…] searches for values of the parameters of a trial function of two or more variables. | |
ResourceFunction["NVariationalBound"][{f,g},u[x],{x,xmin,xmax},ut,{a,a0},{b,b0},…] searches for values of the parameters that extremize the ratio , where the integrands f and g are functions of u, its derivatives and x. |
Eigenvalue problem for a third-order ordinary differential equation:
In[1]:= |
In[2]:= |
Out[2]= |
The solution fits the equation well in this case:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
In[5]:= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License