Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the equation for a hyperbola given two foci and a point
ResourceFunction["FociPointHyperbola"][{f1,f2,p},{x,y}] returns the hyperbola A x2+B x y+C y2+D x+E y+F in the variables x and y, given the foci f1,f2 and a point p through which the hyperbola passes. | |
ResourceFunction["FociPointHyperbola"][{f1,f2,p},t] returns a parametric equation in the variable t. |
Find the Cartesian equation of a hyperbola with foci (2,2) and (3,5) that goes through point (1,3):
In[1]:= |
Out[2]= |
Show the hyperbola:
In[3]:= |
Out[3]= |
Find the three hyperbolas generated by the three points:
In[4]:= |
Out[4]= |
The three hyperbolas happen to intersect at the inner and outer Soddy centers for triangle ΔFGH:
In[5]:= |
Out[5]= |
Generate the parametric equations of a hyperbola with foci (2,2) and (3,5) that goes through point (1,3):
In[6]:= |
Out[7]= |
Show the hyperbola:
In[8]:= |
Out[8]= |
Use a different set of variables:
In[9]:= |
Out[9]= |
Use formal variables:
In[10]:= |
Out[10]= |
If no variables are given, formal variables are used by default:
In[11]:= |
Out[11]= |
Use FociPointHyperbola to generate the implicit Cartesian equation of a hyperbola:
In[12]:= |
Out[13]= |
Use GroebnerBasis to get an equivalent result:
In[14]:= |
Out[14]= |
Generate an equivalent parametric equation:
In[15]:= |
Out[15]= |
Use GroebnerBasis to derive the implicit Cartesian equation from the parametric equation:
In[16]:= |
Out[16]= |
Use the resource function HyperbolaProperties to generate properties of the hyperbola:
In[17]:= |
Out[17]= |
Get a hyperbola equation:
In[18]:= |
Out[18]= |
Show positions for coefficients in A x2+B x y+C y2+D x+E y+F=0:
In[19]:= |
Out[19]= |
Get the coefficients:
In[20]:= |
Out[20]= |
See the coefficients in the standard order:
In[21]:= |
Out[21]= |
Three arbitrary circles and some middle circles:
In[22]:= |
Out[23]= |
Find the three hyperbolas using two circle centers and a midcircle center:
In[24]:= |
Find real-valued intersection points of the three hyperbolas:
In[25]:= |
Out[25]= |
Find a few distances:
In[26]:= |
Show two circles tangent to the given circles:
In[27]:= |
Out[27]= |
This work is licensed under a Creative Commons Attribution 4.0 International License