Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the equation for a hyperbola given two foci and a point
ResourceFunction["FociPointHyperbola"][{f1,f2,p},{x,y}] returns the hyperbola A x2+B x y+C y2+D x+E y+F in the variables x and y, given the foci f1,f2 and a point p through which the hyperbola passes. | |
ResourceFunction["FociPointHyperbola"][{f1,f2,p},t] returns a parametric equation in the variable t. |
Find the Cartesian equation of a hyperbola with foci (2,2) and (3,5) that goes through point (1,3):
In[1]:= | ![]() |
Out[2]= | ![]() |
Show the hyperbola:
In[3]:= | ![]() |
Out[3]= | ![]() |
Find the three hyperbolas generated by the three points:
In[4]:= | ![]() |
Out[4]= | ![]() |
The three hyperbolas happen to intersect at the inner and outer Soddy centers for triangle ΔFGH:
In[5]:= | ![]() |
Out[5]= | ![]() |
Generate the parametric equations of a hyperbola with foci (2,2) and (3,5) that goes through point (1,3):
In[6]:= | ![]() |
Out[7]= | ![]() |
Show the hyperbola:
In[8]:= | ![]() |
Out[8]= | ![]() |
Use a different set of variables:
In[9]:= | ![]() |
Out[9]= | ![]() |
Use formal variables:
In[10]:= | ![]() |
Out[10]= | ![]() |
If no variables are given, formal variables are used by default:
In[11]:= | ![]() |
Out[11]= | ![]() |
Use FociPointHyperbola to generate the implicit Cartesian equation of a hyperbola:
In[12]:= | ![]() |
Out[13]= | ![]() |
Use GroebnerBasis to get an equivalent result:
In[14]:= | ![]() |
Out[14]= | ![]() |
Generate an equivalent parametric equation:
In[15]:= | ![]() |
Out[15]= | ![]() |
Use GroebnerBasis to derive the implicit Cartesian equation from the parametric equation:
In[16]:= | ![]() |
Out[16]= | ![]() |
Use the resource function HyperbolaProperties to generate properties of the hyperbola:
In[17]:= | ![]() |
Out[17]= | ![]() |
Get a hyperbola equation:
In[18]:= | ![]() |
Out[18]= | ![]() |
Show positions for coefficients in A x2+B x y+C y2+D x+E y+F=0:
In[19]:= | ![]() |
Out[19]= | ![]() |
Get the coefficients:
In[20]:= | ![]() |
Out[20]= | ![]() |
See the coefficients in the standard order:
In[21]:= | ![]() |
Out[21]= | ![]() |
Three arbitrary circles and some middle circles:
In[22]:= | ![]() |
Out[23]= | ![]() |
Find the three hyperbolas using two circle centers and a midcircle center:
In[24]:= | ![]() |
Find real-valued intersection points of the three hyperbolas:
In[25]:= | ![]() |
Out[25]= | ![]() |
Find a few distances:
In[26]:= | ![]() |
Show two circles tangent to the given circles:
In[27]:= | ![]() |
Out[27]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License