Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Estimate the Hölder p-norm of a numerical matrix
ResourceFunction["MatrixNorm"][m,p] gives an estimate of the Hölder p-norm of the numerical matrix m. |
Estimate the 2-norm of a rectangular matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compare with the result of Norm:
In[2]:= | ![]() |
Out[2]= | ![]() |
Estimate the 4-norm of a matrix:
In[3]:= | ![]() |
Out[3]= | ![]() |
Estimate the 4-norm to arbitrary precision:
In[4]:= | ![]() |
Out[4]= | ![]() |
Plot the p-norm of a matrix with varying p:
In[5]:= | ![]() |
Out[5]= | ![]() |
Increase the "Samples" setting to get a better estimate:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Lower the Tolerance setting to get a better estimate:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
MatrixNorm[m,1] is equivalent to Norm[m,1]:
In[10]:= | ![]() |
Out[10]= | ![]() |
MatrixNorm[m,∞] is equivalent to Norm[m,∞]:
In[11]:= | ![]() |
Out[11]= | ![]() |
For 1<p<∞, MatrixNorm usually gives a good estimate of the p-norm, with less time and effort:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
MatrixNorm only works for numerical matrices:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
MatrixNorm only estimates p-norms for p>1:
In[16]:= | ![]() |
Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License