Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Estimate the Hölder p-norm of a numerical matrix
ResourceFunction["MatrixNorm"][m,p] gives an estimate of the Hölder p-norm of the numerical matrix m. |
Estimate the 2-norm of a rectangular matrix:
In[1]:= |
Out[1]= |
Compare with the result of Norm:
In[2]:= |
Out[2]= |
Estimate the 4-norm of a matrix:
In[3]:= |
Out[3]= |
Estimate the 4-norm to arbitrary precision:
In[4]:= |
Out[4]= |
Plot the p-norm of a matrix with varying p:
In[5]:= |
Out[5]= |
Increase the "Samples" setting to get a better estimate:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Lower the Tolerance setting to get a better estimate:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
MatrixNorm[m,1] is equivalent to Norm[m,1]:
In[10]:= |
Out[10]= |
MatrixNorm[m,∞] is equivalent to Norm[m,∞]:
In[11]:= |
Out[11]= |
For 1<p<∞, MatrixNorm usually gives a good estimate of the p-norm, with less time and effort:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
MatrixNorm only works for numerical matrices:
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
MatrixNorm only estimates p-norms for p>1:
In[16]:= |
Out[16]= |
This work is licensed under a Creative Commons Attribution 4.0 International License