Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Estimate the Hölder p-norm of a numerical matrix
ResourceFunction["MatrixNorm"][m,p] gives an estimate of the Hölder p-norm of the numerical matrix m. |
Estimate the 2-norm of a rectangular matrix:
| In[1]:= | ![]() |
| Out[1]= |
Compare with the result of Norm:
| In[2]:= | ![]() |
| Out[2]= |
Estimate the 4-norm of a matrix:
| In[3]:= | ![]() |
| Out[3]= |
Estimate the 4-norm to arbitrary precision:
| In[4]:= | ![]() |
| Out[4]= |
Plot the p-norm of a matrix with varying p:
| In[5]:= | ![]() |
| Out[5]= | ![]() |
Increase the "Samples" setting to get a better estimate:
| In[6]:= | ![]() |
| Out[6]= |
| In[7]:= | ![]() |
| Out[7]= |
Lower the Tolerance setting to get a better estimate:
| In[8]:= | ![]() |
| Out[8]= |
| In[9]:= | ![]() |
| Out[9]= |
MatrixNorm[m,1] is equivalent to Norm[m,1]:
| In[10]:= | ![]() |
| Out[10]= |
MatrixNorm[m,∞] is equivalent to Norm[m,∞]:
| In[11]:= | ![]() |
| Out[11]= |
For 1<p<∞, MatrixNorm usually gives a good estimate of the p-norm, with less time and effort:
| In[12]:= | ![]() |
| Out[12]= |
| In[13]:= | ![]() |
| Out[13]= |
MatrixNorm only works for numerical matrices:
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
MatrixNorm only estimates p-norms for p>1:
| In[16]:= |
| Out[16]= |
This work is licensed under a Creative Commons Attribution 4.0 International License