Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Zolotarev polynomial
ResourceFunction["ZolotarevZ"][p,q,x,m] gives the Zolotarev polynomial Zp,q(x|m). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Evaluate to high precision:
| In[3]:= |
| Out[3]= |
Evaluate with symbolic argument and numerical parameter:
| In[4]:= |
| Out[4]= |
ZolotarevZ threads elementwise over lists:
| In[5]:= |
| Out[5]= |
Plot a Zolotarev polynomial and show the location of its global maximum in [-1,1]:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
Compare a Zolotarev polynomial with a Chebyshev polynomial of the same degree:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
When m=0 or m=1, the Zolotarev polynomial is a scalar multiple of the Chebyshev polynomial ChebyshevT:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
A parametric representation of the Zolotarev polynomial:
| In[10]:= | ![]() |
| In[11]:= | ![]() |
Check equivalence with the explicit representation:
| In[12]:= | ![]() |
| Out[12]= |
The literature sometimes uses a different definition of the Zolotarev polynomial, where the polynomial is defined to have p zeroes in [-1,1]:
| In[13]:= | ![]() |
| In[14]:= |
| Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License