Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Weyr decomposition of a square matrix
ResourceFunction["WeyrDecomposition"][m] yields the Weyr decomposition of a square matrix m. The result is a list {s,w} where s is a similarity matrix and w is the Weyr canonical form of m. |
Find the Weyr decomposition of a 7×7 matrix:
| In[1]:= | ![]() |
| Out[1]= | ![]() |
Format the results:
| In[2]:= |
| Out[2]= | ![]() |
Weyr decomposition of an exact matrix with a deficient eigenspace:
| In[3]:= | ![]() |
| In[4]:= |
| In[5]:= |
| Out[5]= | ![]() |
Weyr decomposition of a symbolic matrix:
| In[6]:= | ![]() |
| In[7]:= |
| In[8]:= |
| Out[8]= | ![]() |
WeyrDecomposition[m] gives a matrix factorization of m as s.w.Inverse[s]:
| In[9]:= | ![]() |
Find the Weyr decomposition:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= | ![]() |
m is equal to s.w.Inverse[s]:
| In[12]:= |
| Out[12]= |
The eigenvalues of m are on the diagonal of w:
| In[13]:= |
| Out[13]= |
For matrices that do not have multiple Jordan blocks associated with an eigenvalue, WeyrDecomposition is equivalent to JordanDecomposition:
| In[14]:= |
| In[15]:= |
| Out[15]= | ![]() |
| In[16]:= |
| Out[16]= |
This work is licensed under a Creative Commons Attribution 4.0 International License