Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Weyr decomposition of a square matrix
ResourceFunction["WeyrDecomposition"][m] yields the Weyr decomposition of a square matrix m. The result is a list {s,w} where s is a similarity matrix and w is the Weyr canonical form of m. |
Find the Weyr decomposition of a 7×7 matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
Format the results:
In[2]:= | ![]() |
Out[2]= | ![]() |
Weyr decomposition of an exact matrix with a deficient eigenspace:
In[3]:= | ![]() |
In[4]:= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Weyr decomposition of a symbolic matrix:
In[6]:= | ![]() |
In[7]:= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
WeyrDecomposition[m] gives a matrix factorization of m as s.w.Inverse[s]:
In[9]:= | ![]() |
Find the Weyr decomposition:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
m is equal to s.w.Inverse[s]:
In[12]:= | ![]() |
Out[12]= | ![]() |
The eigenvalues of m are on the diagonal of w:
In[13]:= | ![]() |
Out[13]= | ![]() |
For matrices that do not have multiple Jordan blocks associated with an eigenvalue, WeyrDecomposition is equivalent to JordanDecomposition:
In[14]:= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License