Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Weyr decomposition of a square matrix
ResourceFunction["WeyrDecomposition"][m] yields the Weyr decomposition of a square matrix m. The result is a list {s,w} where s is a similarity matrix and w is the Weyr canonical form of m. |
Find the Weyr decomposition of a 7×7 matrix:
In[1]:= |
Out[1]= |
Format the results:
In[2]:= |
Out[2]= |
Weyr decomposition of an exact matrix with a deficient eigenspace:
In[3]:= |
In[4]:= |
In[5]:= |
Out[5]= |
Weyr decomposition of a symbolic matrix:
In[6]:= |
In[7]:= |
In[8]:= |
Out[8]= |
WeyrDecomposition[m] gives a matrix factorization of m as s.w.Inverse[s]:
In[9]:= |
Find the Weyr decomposition:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
m is equal to s.w.Inverse[s]:
In[12]:= |
Out[12]= |
The eigenvalues of m are on the diagonal of w:
In[13]:= |
Out[13]= |
For matrices that do not have multiple Jordan blocks associated with an eigenvalue, WeyrDecomposition is equivalent to JordanDecomposition:
In[14]:= |
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
This work is licensed under a Creative Commons Attribution 4.0 International License