Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the unwinding number
ResourceFunction["UnwindingNumber"][z] gives the unwinding number 𝒰(z). |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot of the unwinding number in the complex plane:
In[2]:= |
Out[2]= |
Evaluate the unwinding number of a Root object:
In[3]:= |
Out[3]= |
Evaluate the unwinding number of a machine precision number:
In[4]:= |
Out[4]= |
Evaluate the unwinding number of an arbitrary precision number:
In[5]:= |
Out[5]= |
UnwindingNumber threads elementwise over lists:
In[6]:= |
Out[6]= |
The identity does not generally hold for complex z and w:
In[7]:= |
Out[7]= |
Use the unwinding number to construct a formula that is valid in the entire complex plane:
In[8]:= |
Out[8]= |
The identity does not generally hold for complex z and w:
In[9]:= |
Out[9]= |
Use the unwinding number to construct a formula that is valid in the entire complex plane:
In[10]:= |
Out[10]= |
A relationship between the inverse sine and the inverse tangent:
In[11]:= |
Out[11]= |
The unwinding number is an integer:
In[12]:= |
Out[12]= |
Compare UnwindingNumber with one of its definitions:
In[13]:= |
Out[13]= |
Numerical decision procedures with default settings cannot automatically resolve this value:
In[14]:= |
Out[14]= |
Use Simplify to resolve:
In[15]:= |
Out[15]= |
Define the Wright omega function:
In[16]:= |
Visualize the fringing fields of a semi-infinite parallel plate capacitor:
In[17]:= |
Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License