Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the unwinding number
ResourceFunction["UnwindingNumber"][z] gives the unwinding number 𝒰(z). |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot of the unwinding number in the complex plane:
In[2]:= | ![]() |
Out[2]= | ![]() |
Evaluate the unwinding number of a Root object:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate the unwinding number of a machine precision number:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate the unwinding number of an arbitrary precision number:
In[5]:= | ![]() |
Out[5]= | ![]() |
UnwindingNumber threads elementwise over lists:
In[6]:= | ![]() |
Out[6]= | ![]() |
The identity does not generally hold for complex z and w:
In[7]:= | ![]() |
Out[7]= | ![]() |
Use the unwinding number to construct a formula that is valid in the entire complex plane:
In[8]:= | ![]() |
Out[8]= | ![]() |
The identity does not generally hold for complex z and w:
In[9]:= | ![]() |
Out[9]= | ![]() |
Use the unwinding number to construct a formula that is valid in the entire complex plane:
In[10]:= | ![]() |
Out[10]= | ![]() |
A relationship between the inverse sine and the inverse tangent:
In[11]:= | ![]() |
Out[11]= | ![]() |
The unwinding number is an integer:
In[12]:= | ![]() |
Out[12]= | ![]() |
Compare UnwindingNumber with one of its definitions:
In[13]:= | ![]() |
Out[13]= | ![]() |
Numerical decision procedures with default settings cannot automatically resolve this value:
In[14]:= | ![]() |
Out[14]= | ![]() |
Use Simplify to resolve:
In[15]:= | ![]() |
Out[15]= | ![]() |
Define the Wright omega function:
In[16]:= | ![]() |
Visualize the fringing fields of a semi-infinite parallel plate capacitor:
In[17]:= | ![]() |
Out[17]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License