Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a surface twisting a curve
ResourceFunction["TwistedSurface"][c,a,b,{u,v}] gives the parametric surface parameterized by variables u and v and generated by a generatrix curve c at a distance a from the origin, twisted b times. |
The Möbius strip is generated with a half twist:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
See how the surface is generated:
In[3]:= | ![]() |
Out[3]= | ![]() |
Increase the distance from the origin:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
A complete twist:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
A lemniscate:
In[8]:= | ![]() |
Out[8]= | ![]() |
A twist of a lemniscate gives the figure–eight parametrization of a Klein bottle:
In[9]:= | ![]() |
Out[9]= | ![]() |
Plot the Klein bottle:
In[10]:= | ![]() |
Out[10]= | ![]() |
A Lissajous curve:
In[11]:= | ![]() |
A twist of the Lissajous curve:
In[12]:= | ![]() |
Out[12]= | ![]() |
Plot the resulting surface:
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License