Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a surface twisting a curve
ResourceFunction["TwistedSurface"][c,a,b,{u,v}] gives the parametric surface parameterized by variables u and v and generated by a generatrix curve c at a distance a from the origin, twisted b times. |
The Möbius strip is generated with a half twist:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= | ![]() |
See how the surface is generated:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
Increase the distance from the origin:
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= | ![]() |
A complete twist:
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= | ![]() |
A lemniscate:
| In[8]:= |
| Out[8]= |
A twist of a lemniscate gives the figure–eight parametrization of a Klein bottle:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Plot the Klein bottle:
| In[10]:= |
| Out[10]= | ![]() |
A Lissajous curve:
| In[11]:= |
A twist of the Lissajous curve:
| In[12]:= |
| Out[12]= | ![]() |
Plot the resulting surface:
| In[13]:= |
| Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License