Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the turning number of a curve
ResourceFunction["TurningNumber"][c,{t,a,b}] computes the turning number of a curve c with parameter t running from a to b. |
The turning number changes its sign depending on whether the tangent vector moves clockwise or counterclockwise:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Define a limaçon:
In[3]:= | ![]() |
Out[3]= | ![]() |
Here is a function for computing tangent vectors:
In[4]:= | ![]() |
Interactively plot the limaçon while tracking a tangent vector and its turning number. This shows that the turning number of a limaçon is 2:
In[5]:= | ![]() |
Out[5]= | ![]() |
Define an eight curve:
In[6]:= | ![]() |
The turning number of an eight curve is first -1, then 1, giving a total of 0:
In[7]:= | ![]() |
Out[7]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License