Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the turning number of a curve
ResourceFunction["TurningNumber"][c,{t,a,b}] computes the turning number of a curve c with parameter t running from a to b. |
The turning number changes its sign depending on whether the tangent vector moves clockwise or counterclockwise:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= |
Define a limaçon:
| In[3]:= |
| Out[3]= |
Here is a function for computing tangent vectors:
| In[4]:= | ![]() |
Interactively plot the limaçon while tracking a tangent vector and its turning number. This shows that the turning number of a limaçon is 2:
| In[5]:= | ![]() |
| Out[5]= | ![]() |
Define an eight curve:
| In[6]:= |
The turning number of an eight curve is first -1, then 1, giving a total of 0:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License