Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get trigonometric datasets including closed-form values
ResourceFunction["TrigDataset"][f] gets a dataset for the specified trigonometric function f. |
"Digits" | 2 | precision of the "Decimal" result |
"DegreeStep" | 3 | step size (in degrees) between rows in the result |
Generate some trigonometric data:
In[2]:= | ![]() |
Show all information for a specified row:
In[3]:= | ![]() |
Out[3]= | ![]() |
Select one of the columns in this row to show the result in standard closed form:
In[4]:= | ![]() |
Out[4]= | ![]() |
Show the entire row outside of the dataset with StandardForm:
In[5]:= | ![]() |
Out[5]= | ![]() |
The same thing can be gotten by applying Normal:
In[6]:= | ![]() |
Out[6]= | ![]() |
With the "Digits" option, one can get any precision value for the results in the "Decimal" column:
In[7]:= | ![]() |
Out[7]= | ![]() |
Use the option "DegreeStep" to specify the difference between the angle at successive rows in the results. Values which are multiples of 1/8 will give results in terms of radicals:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Use 12 degree steps:
In[10]:= | ![]() |
Out[10]= | ![]() |
Show multiple results simultaneously:
In[11]:= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
For many "DegreeStep" values, one can obtain a radical result using "Value":
In[13]:= | ![]() |
Out[13]= | ![]() |
Use a Quantity for "DegreeStep" to specify radians:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Sometimes the result of the closed form appears inside the dataset, which is not very useful for copying the result:
In[16]:= | ![]() |
Out[17]= | ![]() |
Retrieve the StandardForm:
In[18]:= | ![]() |
Out[18]= | ![]() |
The smaller the "DegreeStep", the longer the time to evaluate. Tangent with step 1/2 takes about 10 minutes and step 3/8 takes about 20 minutes:
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License