Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the tangent developable surface of a curve
| ResourceFunction["TangentDevelopableSurface"][c,t,{u,v}] gives the developable surface generated by the parametrized curve c[t] and its tangents in variables u,v. | 
The tangent developable surface of a helix:
| In[1]:= | ![helix = Entity["SpaceCurve", "Helix"]["ParametricEquations"][1, 2][t]](https://www.wolframcloud.com/obj/resourcesystem/images/75f/75f19aab-19bd-4c6d-a49a-831d24f05b36/3edb1f7ab3fee0fd.png) | 
| Out[1]= |  | 
| In[2]:= | ![tdhelix = ResourceFunction["TangentDevelopableSurface"][helix, t, {u, v}] // Simplify](https://www.wolframcloud.com/obj/resourcesystem/images/75f/75f19aab-19bd-4c6d-a49a-831d24f05b36/6fe69c0b9e9370b3.png) | 
| Out[2]= |  | 
| In[3]:= | ![ParametricPlot3D[Evaluate[tdhelix], {u, 0, 12}, {v, 0, 2 \[Pi]}, PlotPoints -> {40, 15}]](https://www.wolframcloud.com/obj/resourcesystem/images/75f/75f19aab-19bd-4c6d-a49a-831d24f05b36/379021e1970a9a92.png) | 
| Out[3]= |  | 
Using the Viviani’s curve:
| In[4]:= | ![viviani[a_, t_] := {a (1 + Cos[t]), a Sin[t], 2 a Sin[t/2]}](https://www.wolframcloud.com/obj/resourcesystem/images/75f/75f19aab-19bd-4c6d-a49a-831d24f05b36/30aac01b868ea41d.png) | 
| In[5]:= | ![tdviviani = ResourceFunction["TangentDevelopableSurface"][viviani[1, t], t, {u, v}] // Simplify](https://www.wolframcloud.com/obj/resourcesystem/images/75f/75f19aab-19bd-4c6d-a49a-831d24f05b36/3b3e1e7ce2915362.png) | 
| Out[5]= |  | 
| In[6]:= | ![ParametricPlot3D[Evaluate[tdviviani], {u, 0, 4 \[Pi]}, {v, -4, 4}, PlotPoints -> {40, 15}]](https://www.wolframcloud.com/obj/resourcesystem/images/75f/75f19aab-19bd-4c6d-a49a-831d24f05b36/1e1d3483ff2804bb.png) | 
| Out[6]= |  | 
This work is licensed under a Creative Commons Attribution 4.0 International License