Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Takagi decomposition of a complex-symmetric matrix
ResourceFunction["TakagiDecomposition"][m] gives the Takagi decomposition for a complex-symmetric numerical matrix m as a list of matrices {q,d} where q is a unitary matrix and d is a diagonal matrix. |
Find the Takagi decomposition of a complex-symmetric matrix:
| In[1]:= | ![]() |
| In[2]:= |
| Out[2]= | ![]() |
Confirm the decomposition up to numerical rounding:
| In[3]:= |
| Out[3]= |
Format q and d:
| In[4]:= |
| Out[4]= | ![]() |
A complex-symmetric matrix with arbitrary-precision entries:
| In[5]:= |
| Out[5]= | ![]() |
Find the Takagi decomposition:
| In[6]:= |
| Out[6]= | ![]() |
Confirm the decomposition up to numerical rounding:
| In[7]:= |
| Out[7]= |
Generate a complex-symmetric matrix:
| In[8]:= |
| Out[8]= | ![]() |
Compute its Takagi decomposition:
| In[9]:= |
| Out[9]= | ![]() |
q is a unitary matrix:
| In[10]:= |
| Out[10]= |
d is a diagonal matrix with non-negative entries:
| In[11]:= |
| Out[11]= |
m is equal to q.d.Transpose[q]:
| In[12]:= |
| Out[12]= |
For real symmetric positive-definite matrices, TakagiDecomposition gives a result equivalent to SingularValueDecomposition and SchurDecomposition:
| In[13]:= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= |
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
TakagiDecomposition only works with approximate numerical matrices:
| In[20]:= | ![]() |
| Out[20]= | ![]() |
| In[21]:= | ![]() |
| Out[21]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License