Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Takagi decomposition of a complex-symmetric matrix
ResourceFunction["TakagiDecomposition"][m] gives the Takagi decomposition for a complex-symmetric numerical matrix m as a list of matrices {q,d} where q is a unitary matrix and d is a diagonal matrix. |
Find the Takagi decomposition of a complex-symmetric matrix:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Confirm the decomposition up to numerical rounding:
In[3]:= | ![]() |
Out[3]= | ![]() |
Format q and d:
In[4]:= | ![]() |
Out[4]= | ![]() |
A complex-symmetric matrix with arbitrary-precision entries:
In[5]:= | ![]() |
Out[5]= | ![]() |
Find the Takagi decomposition:
In[6]:= | ![]() |
Out[6]= | ![]() |
Confirm the decomposition up to numerical rounding:
In[7]:= | ![]() |
Out[7]= | ![]() |
Generate a complex-symmetric matrix:
In[8]:= | ![]() |
Out[8]= | ![]() |
Compute its Takagi decomposition:
In[9]:= | ![]() |
Out[9]= | ![]() |
q is a unitary matrix:
In[10]:= | ![]() |
Out[10]= | ![]() |
d is a diagonal matrix with non-negative entries:
In[11]:= | ![]() |
Out[11]= | ![]() |
m is equal to q.d.Transpose[q]:
In[12]:= | ![]() |
Out[12]= | ![]() |
For real symmetric positive-definite matrices, TakagiDecomposition gives a result equivalent to SingularValueDecomposition and SchurDecomposition:
In[13]:= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
TakagiDecomposition only works with approximate numerical matrices:
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License