Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Takagi decomposition of a complex-symmetric matrix
ResourceFunction["TakagiDecomposition"][m] gives the Takagi decomposition for a complex-symmetric numerical matrix m as a list of matrices {q,d} where q is a unitary matrix and d is a diagonal matrix. |
Find the Takagi decomposition of a complex-symmetric matrix:
In[1]:= |
In[2]:= |
Out[2]= |
Confirm the decomposition up to numerical rounding:
In[3]:= |
Out[3]= |
Format q and d:
In[4]:= |
Out[4]= |
A complex-symmetric matrix with arbitrary-precision entries:
In[5]:= |
Out[5]= |
Find the Takagi decomposition:
In[6]:= |
Out[6]= |
Confirm the decomposition up to numerical rounding:
In[7]:= |
Out[7]= |
Generate a complex-symmetric matrix:
In[8]:= |
Out[8]= |
Compute its Takagi decomposition:
In[9]:= |
Out[9]= |
q is a unitary matrix:
In[10]:= |
Out[10]= |
d is a diagonal matrix with non-negative entries:
In[11]:= |
Out[11]= |
m is equal to q.d.Transpose[q]:
In[12]:= |
Out[12]= |
For real symmetric positive-definite matrices, TakagiDecomposition gives a result equivalent to SingularValueDecomposition and SchurDecomposition:
In[13]:= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
TakagiDecomposition only works with approximate numerical matrices:
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
This work is licensed under a Creative Commons Attribution 4.0 International License