Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the symmetric Kronecker product of two matrices
ResourceFunction["SymmetricKroneckerProduct"][m1,m2] constructs the symmetric Kronecker product of the square matrices m1 and m2. |
Compute the symmetric Kronecker product of two symbolic 2×2 matrices:
In[1]:= | ![]() |
Out[1]= | ![]() |
The symmetric Kronecker product of two exact matrices:
In[2]:= | ![]() |
Out[2]= | ![]() |
The symmetric Kronecker product of two numerical matrices:
In[3]:= | ![]() |
Out[3]= | ![]() |
The symmetric Kronecker product of two sparse matrices:
In[4]:= | ![]() |
Out[4]= | ![]() |
The symmetric Kronecker product is multi-linear (linear in each argument):
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
The symmetric Kronecker product is commutative:
In[7]:= | ![]() |
Out[7]= | ![]() |
Transposition distributes over the symmetric Kronecker product:
In[8]:= | ![]() |
Out[8]= | ![]() |
The symmetric Kronecker product distributes over addition:
In[9]:= | ![]() |
Out[9]= | ![]() |
Verify an expansion formula for the product of two symmetric Kronecker products:
In[10]:= | ![]() |
Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License