Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the symmetric Kronecker product of two matrices
ResourceFunction["SymmetricKroneckerProduct"][m1,m2] constructs the symmetric Kronecker product of the square matrices m1 and m2. |
Compute the symmetric Kronecker product of two symbolic 2×2 matrices:
| In[1]:= |
| Out[1]= | ![]() |
The symmetric Kronecker product of two exact matrices:
| In[2]:= |
| Out[2]= | ![]() |
The symmetric Kronecker product of two numerical matrices:
| In[3]:= |
| Out[3]= | ![]() |
The symmetric Kronecker product of two sparse matrices:
| In[4]:= | ![]() |
| Out[4]= |
The symmetric Kronecker product is multi-linear (linear in each argument):

| In[5]:= | ![]() |
| Out[5]= |
| In[6]:= | ![]() |
| Out[6]= |
The symmetric Kronecker product is commutative:
| In[7]:= | ![]() |
| Out[7]= |
Transposition distributes over the symmetric Kronecker product:
| In[8]:= | ![]() |
| Out[8]= |
The symmetric Kronecker product distributes over addition:

| In[9]:= | ![]() |
| Out[9]= |
Verify an expansion formula for the product of two symmetric Kronecker products:
| In[10]:= | ![]() |
| Out[10]= |
This work is licensed under a Creative Commons Attribution 4.0 International License