Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Create a symbolic indexed array
ResourceFunction["SymbolicIndexedArray"][symbol, dims] creates a symbolic array by indexing symbol with subscripts indicating its position in an array with dimensions dims. |
Create a 3 by 3 matrix:
In[1]:= |
Out[1]= |
Display the matrix in different forms:
In[2]:= |
Out[2]= |
Create a tensor with subscripts:
In[3]:= |
Out[3]= |
Add symbolic vectors:
In[4]:= |
Out[4]= |
Perform additional vector computations::
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
Norm with various vector norms:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
Upper triangularize a matrix:
In[16]:= |
Out[16]= |
Lower triangularize a matrix:
In[17]:= |
Out[17]= |
Find elements on the main diagonal:
In[18]:= |
Out[18]= |
Find elements on the superdiagonal:
In[19]:= |
Out[19]= |
Find elements on the subdiagonal:
In[20]:= |
Out[20]= |
Perform a Dot product on symbolic matrices:
In[21]:= |
Out[21]= |
Perform various other matrix operations:
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
In[27]:= |
Out[27]= |
This work is licensed under a Creative Commons Attribution 4.0 International License