Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Create a symbolic indexed array
ResourceFunction["SymbolicIndexedArray"][symbol, dims] creates a symbolic array by indexing symbol with subscripts indicating its position in an array with dimensions dims. |
Create a 3 by 3 matrix:
| In[1]:= |
| Out[1]= |
Display the matrix in different forms:
| In[2]:= | ![]() |
| Out[2]= | ![]() |
Create a tensor with subscripts:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
Add symbolic vectors:
| In[4]:= |
| Out[4]= |
Perform additional vector computations::
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= |
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= | ![]() |
Norm with various vector norms:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
Upper triangularize a matrix:
| In[16]:= |
| Out[16]= |
Lower triangularize a matrix:
| In[17]:= |
| Out[17]= |
Find elements on the main diagonal:
| In[18]:= |
| Out[18]= |
Find elements on the superdiagonal:
| In[19]:= |
| Out[19]= |
Find elements on the subdiagonal:
| In[20]:= |
| Out[20]= |
Perform a Dot product on symbolic matrices:
| In[21]:= |
| Out[21]= | ![]() |
Perform various other matrix operations:
| In[22]:= |
| Out[22]= | ![]() |
| In[23]:= |
| Out[23]= | ![]() |
| In[24]:= |
| Out[24]= |
| In[25]:= |
| Out[25]= |
| In[26]:= |
| Out[26]= |
| In[27]:= |
| Out[27]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License