Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Create a symbolic indexed array
ResourceFunction["SymbolicIndexedArray"][symbol, dims] creates a symbolic array by indexing symbol with subscripts indicating its position in an array with dimensions dims. |
Create a 3 by 3 matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
Display the matrix in different forms:
In[2]:= | ![]() |
Out[2]= | ![]() |
Create a tensor with subscripts:
In[3]:= | ![]() |
Out[3]= | ![]() |
Add symbolic vectors:
In[4]:= | ![]() |
Out[4]= | ![]() |
Perform additional vector computations::
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Norm with various vector norms:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Upper triangularize a matrix:
In[16]:= | ![]() |
Out[16]= | ![]() |
Lower triangularize a matrix:
In[17]:= | ![]() |
Out[17]= | ![]() |
Find elements on the main diagonal:
In[18]:= | ![]() |
Out[18]= | ![]() |
Find elements on the superdiagonal:
In[19]:= | ![]() |
Out[19]= | ![]() |
Find elements on the subdiagonal:
In[20]:= | ![]() |
Out[20]= | ![]() |
Perform a Dot product on symbolic matrices:
In[21]:= | ![]() |
Out[21]= | ![]() |
Perform various other matrix operations:
In[22]:= | ![]() |
Out[22]= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
In[26]:= | ![]() |
Out[26]= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License