Function Repository Resource:

# SubsetGroup

Compute a group induced by a permutation group on k-subsets

Contributed by: Wolfram Staff (original content by Sriram V. Pemmaraju and Steven S. Skiena)
 ResourceFunction["SubsetGroup"][g,s] returns the group induced by a group g of n-permutations acting on the set s of k-subsets of {1,…n}. ResourceFunction["SubsetGroup"][g,s,type] treats s as a set of k-subsets or k-tuples, depending on type.

## Details and Options

The group g can be specified as an abstract group or a permutation List {perm1,perm2,}.
ResourceFunction["SubsetGroup"] returns a PermutationGroup object.
type can be either "Ordered" or "Unordered".
The default value of type is "Unordered".
ResourceFunction["SubsetGroup"][g,s,"Ordered"] treats s as a set of k-tuples.

## Examples

### Basic Examples (2)

The permutation group induced on the set of all 2-subsets of {1,2,3} by the cyclic group C3:

 In[1]:=
 Out[1]=
 In[2]:=
 Out[2]=

The permutation group induced on the set of all 2-subsets of {1,2,3,4} by the cyclic group C4:

 In[3]:=
 Out[3]=
 In[4]:=
 Out[4]=

### Scope (3)

Specify the group as a permutation List:

 In[5]:=
 Out[5]=

Or an abstract group:

 In[6]:=
 Out[6]=

The permutation group induced on the set of ordered 2-subsets by C4:

 In[7]:=
 Out[7]=
 In[8]:=
 Out[8]=

### Applications (3)

Permutation group on the edges of the 5-vertex wheel graph:

 In[9]:=
 Out[9]=
 In[10]:=
 Out[10]=

The number of colorings of 4-node simple graphs using at most n colors (OEIS A063842):

 In[11]:=
 Out[11]=

Count the number of distinct dice as orbit representatives of a permutation group induced by a group of symmetries acting on a set of faces of a cube:

 In[12]:=
 In[13]:=
 In[14]:=
 In[15]:=
 Out[15]=
 In[16]:=
 Out[16]=

### Properties and Relations (2)

n 2-subsets of {1,2,3,4,5,6} yield a permutation group of n-permutations:

 In[17]:=
 Out[17]=
 In[18]:=
 Out[18]=
 In[19]:=
 Out[19]=

The n ordered 2-subsets of {1,2,3,4,5,6} yield a permutation group of n-permutations:

 In[20]:=
 Out[20]=
 In[21]:=
 Out[21]=
 In[22]:=
 Out[22]=

## Version History

• 1.0.0 – 05 October 2020