Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Stieltjes-Jacobi polynomial
ResourceFunction["StieltjesJacobiE"][n,a,b,x] gives the Stieltjes-Jacobi polynomial |
Compute the 2nd Stieltjes-Jacobi polynomial:
| In[1]:= |
| Out[1]= | ![]() |
Plot
over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Evaluate numerically:
| In[3]:= |
| Out[3]= |
Evaluate to high precision:
| In[4]:= |
| Out[4]= |
The precision of the output tracks the precision of the input:
| In[5]:= |
| Out[5]= |
StieltjesJacobiE threads elementwise over lists:
| In[6]:= |
| Out[6]= |
Compute the abscissas and weights of a (2n+1)-point Gauss-Kronrod quadrature:
| In[7]:= | ![]() |
| In[8]:= | ![]() |
| In[9]:= |
| Out[9]= | ![]() |
| In[10]:= |
| Out[10]= | ![]() |
Use the Gauss-Kronrod abscissas and weights to approximate the area under a curve:
| In[11]:= |
| In[12]:= |
| Out[12]= |
Compare to the output of NIntegrate:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
Compute the abscissas and weights of a (2n+1)-point Lobatto-Kronrod quadrature:
| In[15]:= | ![]() |
| In[16]:= | ![]() |
| In[17]:= |
| Out[17]= | ![]() |
| In[18]:= |
| Out[18]= | ![]() |
Use the Lobatto-Kronrod abscissas and weights to approximate the area under a curve:
| In[19]:= |
| In[20]:= |
| Out[20]= |
Compare to the output of NIntegrate:
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
The second (nonpolynomial) solution of the Jacobi differential equation,
:
| In[23]:= | ![]() |
StieltjesJacobiE is the polynomial part of the asymptotic expansion of
at Infinity:
| In[24]:= |
| Out[24]= | ![]() |
| In[25]:= |
| Out[25]= |
StieltjesJacobiE is a polynomial of degree n+1:
| In[26]:= |
| Out[26]= |
The roots of JacobiP and StieltjesJacobiE interlace each other:
| In[27]:= |
| Out[27]= | ![]() |
A curve with multiple loops:
| In[28]:= | ![]() |
| Out[28]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License