Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the final angle and spring length of a spring pendulum based on initial conditions
ResourceFunction["SpringPendulumFormula"][params,cond] computes the angle and spring length based on system parameters params and initial conditions cond. | |
ResourceFunction["SpringPendulumFormula"][property] returns the specified property of the spring pendulum formula. |
| k | "k" | spring constant |
| m | "m" | mass |
| l0 | "l0" | spring equalibrium length |
| li | "li" | initial spring length |
| t | "t" | final time |
| θi | "thetai" | initial angle from vertical |
| "Formula" | equations for spring pendulum |
| "QuantityVariableDimensions" | list of base dimensions for all variables |
| "QuantityVariableNames" | English names for all variables |
| "QuantityVariablePhysicalQuantities" | physical quantities for all variables |
| "QuantityVariables" | list of all variables |
| "QuantityVariableTable" | details on all variables |
Solve for the final spring length and final angle from the vertical for a spring pendulum:
| In[1]:= | ![]() |
| Out[1]= | ![]() |
Specify gravitational acceleration:
| In[2]:= | ![]() |
| Out[2]= | ![]() |
Examine the equations of motion for a spring pendulum:
| In[3]:= |
| Out[3]= |
Find the quantity variables used by the SpringPendulumFormula:
| In[4]:= |
| Out[4]= |
Obtain their formal names:
| In[5]:= |
| Out[5]= | ![]() |
Derive the physical quantities and unit dimensions of the variables:
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= | ![]() |
Examine a table combining all the information about the quantity variables used or derived by SpringPendulumFormula:
| In[8]:= |
| Out[8]= | ![]() |
Plot angle and length evolution over time:
| In[9]:= | ![]() |
| In[10]:= |
| Out[10]= | ![]() |
| In[11]:= |
| Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License