Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get curves defined over a sphere
ResourceFunction["SphericalCurve"][{par1,par2,…},"type"] gives the parametrization of a curve of the given type on a sphere, with parameters pari. |
Get the expression for a hyperbolic tangent spiral on a sphere:
In[1]:= |
|
Out[1]= |
|
Plot it:
In[2]:= |
|
Out[2]= |
|
A sphero-cylindrical curve is the intersections between a sphere and a cylinder of revolution:
In[3]:= |
|
Out[3]= |
|
Seiffert's spherical spiral:
In[4]:= |
|
Out[4]= |
|
The Clelia:
In[5]:= |
|
Out[5]= |
|
Spherical cycloid:
In[6]:= |
|
Out[6]= |
|
Spherical trochoid:
In[7]:= |
|
Out[7]= |
|
Spherical sinusoid:
In[8]:= |
|
Out[8]= |
|
Spherical ellipses:
In[9]:= |
|
Out[9]= |
|
Spherical helix:
In[10]:= |
|
In[11]:= |
|
Out[11]= |
|
Spherical cardioid:
In[12]:= |
|
Out[12]= |
|
Satellite curve (Clelias and the spherical helices are special cases):
In[13]:= |
|
Out[13]= |
|
Spherical pendulum:
In[14]:= |
|
Out[14]= |
|
Plot the curve:
In[15]:= |
|
Out[15]= |
|
Stationary precession of a spinning top:
In[16]:= |
|
Out[16]= |
|
Spherical rhumb line:
In[17]:= |
|
Out[17]= |
|
In[18]:= |
|
Out[18]= |
|
Spherical loxodrome:
In[19]:= |
|
Out[19]= |
|
Comparing with the unit–speed spherical loxodrome:
In[20]:= |
|
Out[20]= |
|
Compute quantities like ArcLength:
In[21]:= |
|
Out[21]= |
|
Compute the curvature:
In[22]:= |
|
Out[22]= |
|
The torsion:
In[23]:= |
|
Out[23]= |
|
The spherical nephroid:
In[24]:= |
|
The Frenet–Serret system of the curve:
In[25]:= |
|
Out[25]= |
|
Plot the Frenet–Serret system:
In[26]:= |
|
Out[26]= |
|
The seam line of a tennis ball:
In[27]:= |
|
Out[27]= |
|
Spherical Lissajous:
In[28]:= |
|
Out[28]= |
|
Distinct types of surfaces (like ruled surfaces) can be constructed from curves (used in fields like architecture):
In[29]:= |
|
Out[29]= |
|
Meridians and loxodrome:
In[30]:= |
|
In[31]:= |
|
Out[31]= |
|
For some values of parameters, can be nonreal:
In[32]:= |
|
Out[32]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License