Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a spherical cap in 3D graphics
ResourceFunction["SphericalCap"][] represents a hemisphere. | |
ResourceFunction["SphericalCap"][p] represents a spherical cap with protrusion p. | |
ResourceFunction["SphericalCap"][p,prop] returns a given property prop. |
| "Surface" | BSplineSurface expression; default property |
| "Function" | explicit function corresponding to the BSplineSurface expression |
| "Formula" | explicit formula corresponding to the BSplineSurface expression |
| "ControlPoints" | control points of BSplineSurface expression |
| "Weights" | weights of BSplineSurface expression |
| "Properties" | list of all properties |
Show a hemisphere:
| In[1]:= |
| Out[1]= | ![]() |
Show a spherical cap:
| In[2]:= |
| Out[2]= | ![]() |
Apply styling:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
Spherical caps with different protrusion parameters:
| In[4]:= |
| Out[4]= | ![]() |
As the parameter approaches -1, the cap approaches the unit sphere:
| In[5]:= |
| Out[5]= | ![]() |
List all available properties:
| In[6]:= |
| Out[6]= |
By default, the "Surface" property is returned:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Retrieve the control points of the spline surface for a symbolic protrusion:
| In[8]:= |
| Out[8]= | ![]() |
Retrieve the weights of the spline surface:
| In[9]:= |
| Out[9]= | ![]() |
Get the function internally used by the spline surface:
| In[10]:= |
| Out[11]= | ![]() |
Plot the function for a specific protrusion parameter:
| In[12]:= |
| Out[12]= | ![]() |
Consider only a part of the surface:
| In[13]:= | ![]() |
| Out[15]= | ![]() |
| In[16]:= | ![]() |
| Out[16]= | ![]() |
Get the corresponding formula in formal variables x and y:
| In[17]:= |
| Out[18]= | ![]() |
Create a bowl of water graphic:
| In[19]:= | ![]() |
| Out[20]= | ![]() |
Show a spherical lens:
| In[21]:= | ![]() |
| Out[22]= | ![]() |
Obtain a spherical cap using Ball and ClipPlanes:
| In[23]:= | ![]() |
| Out[23]= | ![]() |
Obtain a spherical cap using SphericalPlot3D:
| In[24]:= | ![]() |
| Out[24]= | ![]() |
Represent a flat 3D disk:
| In[25]:= |
| Out[25]= | ![]() |
Compare with the resource function Disk3D:
| In[26]:= |
| Out[26]= | ![]() |
Despite the stark similarity, the underlying spline surfaces differ substantially:
| In[27]:= |
| Out[27]= | ![]() |
| In[28]:= |
| Out[28]= | ![]() |
Move, scale, and rotate the cap:
| In[29]:= | ![]() |
| Out[30]= | ![]() |
A spherical cap returned by SphericalCap satisfies the equation for a shifted (unit) sphere:
| In[31]:= | ![]() |
| Out[34]= |
Artefacts occur at poles:
| In[35]:= |
| Out[35]= | ![]() |
Increase the rendering parameter for spline surfaces to mitigate the artefacts:
| In[36]:= |
| Out[36]= | ![]() |
The protrusion parameter cannot be set exactly to -1:
| In[37]:= |
| Out[37]= | ![]() |
For such a case, use Ball instead:
| In[38]:= | ![]() |
| Out[38]= | ![]() |
Bubbles made by a bubble wand:
| In[39]:= | ![]() |
| Out[40]= | ![]() |
Visualize the control points:
| In[41]:= | ![]() |
| Out[42]= | ![]() |
Visualize the weights:
| In[43]:= | ![]() |
| Out[44]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License