Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the measure of a simplex or simplicial complex
ResourceFunction["SimplexMeasure"][simplex] gives the measure of simplex. | |
ResourceFunction["SimplexMeasure"][{simplex1,simplex2,…}] gives the measure of the simplicial complex containing simplex1,simplex2,…. | |
ResourceFunction["SimplexMeasure"][complex,d] gives the d-dimensional measure of complex. |
Point[v] | a point |
Line[{v1,v2}] | a line segment |
Triangle[{v1,v2,v3}] or Polygon[{v1,v2,v3}] | a filled triangle |
Tetrahedron[{v1,v2,v3,v4}] | a filled tetrahedron |
Simplex[{v1,v2,…,vn}] | an n-1 dimensional simplex |
{simplex1,simplex2,…} | a list of simplices |
{{v1,2,…,v1,n},{v2,2,…,v2,n},…} | a list of lists of vertices |
MeshRegion[…] | a mesh region |
BoundaryMeshRegion[…] | a boundary mesh region |
Get the measure of a Simplex:
In[1]:= |
|
Out[1]= |
|
Compare to Euclidean distance:
In[2]:= |
|
Out[2]= |
|
Get the measure of a Triangle:
In[3]:= |
|
Out[3]= |
|
Compare to Area:
In[4]:= |
|
Out[4]= |
|
Get the measure of a random 100-dimensional Simplex:
In[5]:= |
|
Out[5]= |
|
Get the measure of a simplicial complex, represented as a list of simplices:
In[6]:= |
|
Out[6]= |
|
Get the measure of a simplicial complex, represented by lists of vertices:
In[7]:= |
|
Out[7]= |
|
Specify a dimension to measure:
In[8]:= |
|
Out[8]= |
|
In[9]:= |
|
Out[9]= |
|
In[10]:= |
|
Out[10]= |
|
Get the measure of a MeshRegion:
In[11]:= |
|
Out[11]= |
|
In[12]:= |
|
Out[12]= |
|
The measure for Point corresponds to counts:
In[13]:= |
|
Out[13]= |
|
In[14]:= |
|
Out[14]= |
|
In[15]:= |
|
Out[15]= |
|
For mesh regions, SimplexMeasure is equivalent to RegionMeasure:
In[16]:= |
|
Out[16]= |
|
In[17]:= |
|
Out[17]= |
|
In[18]:= |
|
Out[18]= |
|
SimplexMeasure works for arbitrary dimension:
In[19]:= |
|
Out[19]= |
|
In[20]:= |
|
Out[20]= |
|
Compare to RegionMeasure:
In[21]:= |
|
Out[21]= |
|
SimplexMeasure performs best when given lists of vertices as an array:
In[22]:= |
|
In[23]:= |
|
Out[23]= |
|
In[24]:= |
|
Out[24]= |
|
Get the measure of the first 10 standard simplices:
In[25]:= |
|
Out[25]= |
|
In[26]:= |
|
Out[26]= |
|
Here’s the corresponding formula:
In[27]:= |
|
Out[27]= |
|
SimplexMeasure uses more efficient methods for simplicial complexes below 6 dimensions:
In[28]:= |
|
Out[26]= |
|
In[29]:= |
|
Out[29]= |
|
Measure a simplex and its boundary:
In[30]:= |
|
Out[26]= |
|
In[31]:= |
|
Out[31]= |
|
In[32]:= |
|
Out[32]= |
|
SimplexMeasure is not supported for abstract simplices:
In[33]:= |
|
Out[33]= |
|
In[34]:= |
|
Out[34]= |
|
In[35]:= |
|
Out[35]= |
|
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License