Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the sign and natural logarithm of the determinant of a matrix
ResourceFunction["SignLogDet"][m] gives the sign and natural logarithm of the determinant of the square matrix m. |
Compute the sign and natural logarithm of the determinant of a matrix:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
The determinant:
In[3]:= | ![]() |
Out[3]= | ![]() |
Or using the built-in function Det:
In[4]:= | ![]() |
Out[4]= | ![]() |
Compute the sign and natural logarithm of the determinant of a real-valued matrix:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Complex-valued array:
In[7]:= | ![]() |
Out[7]= | ![]() |
A SparseArray object:
In[8]:= | ![]() |
Out[8]= | ![]() |
A SymmetrizedArray object:
In[9]:= | ![]() |
Out[9]= | ![]() |
Use a singular matrix:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Use a large matrix:
In[12]:= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Compute the determinant:
In[14]:= | ![]() |
Out[14]= | ![]() |
For real matrices, SignLogDet returns the signs as -1 or 1, depending on whether the determinant is negative or positive:
In[15]:= | ![]() |
Out[15]= | ![]() |
The sign is zero if the determinant is 0:
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
For complex matrices, the sign is a complex number with magnitude 1:
In[18]:= | ![]() |
Out[18]= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
Or complex zero for singular matrices:
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
SignLogDet can give more accurate results than Det for small determinants:
In[22]:= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
SignLogDet may give inaccurate results with machine-precision computation:
In[26]:= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
The logarithm value returned by SignLogDet may be too small to compute the determinant with machine precision:
In[29]:= | ![]() |
In[30]:= | ![]() |
Out[30]= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License