Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the sign and natural logarithm of the determinant of a matrix
ResourceFunction["SignLogDet"][m] gives the sign and natural logarithm of the determinant of the square matrix m. |
Compute the sign and natural logarithm of the determinant of a matrix:
| In[1]:= |
| In[2]:= |
| Out[2]= |
The determinant:
| In[3]:= |
| Out[3]= |
Or using the built-in function Det:
| In[4]:= |
| Out[4]= |
Compute the sign and natural logarithm of the determinant of a real-valued matrix:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
Complex-valued array:
| In[7]:= |
| Out[7]= |
A SparseArray object:
| In[8]:= |
| Out[8]= |
A SymmetrizedArray object:
| In[9]:= |
| Out[9]= |
Use a singular matrix:
| In[10]:= |
| In[11]:= |
| Out[11]= |
Use a large matrix:
| In[12]:= |
| In[13]:= |
| Out[13]= |
Compute the determinant:
| In[14]:= |
| Out[14]= |
For real matrices, SignLogDet returns the signs as -1 or 1, depending on whether the determinant is negative or positive:
| In[15]:= |
| Out[15]= |
The sign is zero if the determinant is 0:
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= |
For complex matrices, the sign is a complex number with magnitude 1:
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
Or complex zero for singular matrices:
| In[20]:= |
| Out[20]= |
| In[21]:= |
| Out[21]= |
SignLogDet can give more accurate results than Det for small determinants:
| In[22]:= |
| In[23]:= |
| Out[23]= |
| In[24]:= |
| Out[24]= |
| In[25]:= |
| Out[25]= |
SignLogDet may give inaccurate results with machine-precision computation:
| In[26]:= |
| In[27]:= |
| Out[27]= |
| In[28]:= |
| Out[28]= |
The logarithm value returned by SignLogDet may be too small to compute the determinant with machine precision:
| In[29]:= |
| In[30]:= |
| Out[30]= |
| In[31]:= |
| Out[31]= |
This work is licensed under a Creative Commons Attribution 4.0 International License