Wolfram Research

Function Repository Resource:

ShortInputForm

Source Notebook

Explore the low-level structure of Wolfram Language expressions with an easy-to-read concise representation

Contributed by: Alexey Popkov  |  AlexeyPopkov

ResourceFunction["ShortInputForm"][expr]

produces terse version of expr intended for inspecting its low-level structure.

Details

ResourceFunction["ShortInputForm"] is intended for use within the Notebook interface.
ResourceFunction["ShortInputForm"][expr] produces a two-dimensional representation of expr, which may be immediately used as input.
Compound-type atomic objects like Image, Graph or NumericArray are kept untouched when they are present as a part of the supplied expression. Such objects can be converted into the corresponding input expressions by applying ResourceFunction["ShortInputForm"] to them directly.
ResourceFunction["ShortInputForm"][expr, Unevaluated] converts most compound-type atomic objects in expr into shortened input expressions. Compact low-level data representations like NumericArray and ByteArray are still kept untouched. They can also be converted by applying ResourceFunction["ShortInputForm"] to them directly.
For Graphics and Graphics3D objects, ResourceFunction["ShortInputForm"] removes duplicate options and sorts the options list.

Examples

Basic Examples (2) 

Display the structure of a Graph expression's input form:

In[1]:=
ResourceFunction["ShortInputForm"][RandomGraph[{100, 100}]]
Out[1]=

Explore the low-level structure of a graphics object produced by Plot. Try selecting subexpressions with the mouse, navigating with keyboard shortcuts, copying and editing code:

In[2]:=
Plot[{Sin[x], Sin[2 x], Sin[3 x]}, {x, 0, 2 Pi}, PlotLegends -> "Expressions"] // ResourceFunction["ShortInputForm"]
Out[2]=

Copy a subexpression from above and use it in Graphics:

In[3]:=
Line[{{1.2822827157509358`*^-7, 3.8468481472527124`*^-7}, Apply[
   Sequence, CompressedData["
1:eJwVWnk4VV8XNlyza7i411DGSsmQqFS0dioU0YgyJqmfFJWhIkoZkoRQNJCh
NJApRLUrFEJC5nme7j2ZZ77z/XWf97n7rL3W+77r7LPOcxQcXI+c4WBjY7vP
ycb2/9+1Q192yj60gxPOXjym6V4wn6Hh2BTpCor6WZ5s6UHQJ35uNjfSD9I2
cIz4pj2CZoM731MiH4DS6cdKtW9fwV+7SOVnkfHQudq463BKHhxxkWp+HPke
XJPspS7e+wkR49bZMZEYcjJOrjxc0wD3JeJ0v1K/gr1ibODmOw1Qkxkgt+XI
V1CYOHQnqqcBrIat+2RbvpL5JFLjXzTCRSuBS+Oj3yA8XSM5W7oZovTOBceK
FMOWx3oXeNjaoINdMW/AohT++lgUXDLqgjXPqXHWT0shwzJFI+JKF5zbMefz
p7MUOG8cyL/9vAvGL1frF/5XBowLdfs7J7qA0utbFeZdDvJDe66cf9oNKj9a
+rbEV4DScs7j8709sLPkAL/+lWrwkg7ZuvNgP4jUvfy97WE1oIJWm9uu/dDb
zRGtll0NNa0RKrER/RDGVignNVENg3bR/qp/+6F758Yt/y7/gYY2+ZGhEwMQ
nCVg//xyDbgW2VL9TgyCzbeza6Mia0A5ecs736uDsLm6aPhuVg10nla2M3w0
CK1Mbw+P8RowN7nO3Fw3CBobRkNMLtdCyQti53njIaiPr/gwf6kOvrbtwes0
huFt+nrvfxF1EI0FDj0+MAw3P99B/Zl1MBZf2151Zhg2tOj++jNWBwJzsRwh
T4bBh57WmXrpL3gez/6rSRkBpfv3BSwu1UMK/4YF8fIRmH0yVG0SUQ/sa4+N
FXSNQMWbfTH6mfVgbVB4VHFuBDxLl+TVx+qBryL9nrbyKJRzXtzKdakBei00
VE/dHAW366anst0a4Z7YtjUZ65hw4KJuKm94I+w63ew6sZ0JSg4qhM37RgiK
9Xs/Y8KE+v3cN3hZjRAlu/us/mUm6El9eWxzvgk0WhNsWj8ygU5915EV0gTs
/c+GFX8x4R9b3DreN00g6X9+84ZWJiQPeuRkDTZBXd0qe/clJvDnq1XzODXD
7FDFYXY9FvS+lWHYBDSDEMX7924TFnyJ57PNSm6Gk0uuY8iKBZeC+kase5pB
tuXYi+tXWdBo/owny74FUucFDjS+Z0HWgXumPDdb4Nl9KT/+zyy4t+tatHV8
C1jJKp6ZL2PBrnXHlXjaWyB4WPQvrYcFKVOCYG3VCvd3HjqpRCPAd2g+IPN6
K7AmNTeg1QRYtg1WcMe1gmDF7Sap9QQIlhSfzGxshesV525x6hHQn5/1gnu2
FcakO4zFDAnA7xIGrRht8HVz6LOOQwRcjvLx5DZvg+bScP+00wSYBDt/tvJo
A9dyC2a6CwHrfCwpmVFt4D6hHebiQUDTae1Iq9o24FCxVF4VSADSGk3LONQO
x+Jtfh1IJkBauXmSy60dYmLHpze+JWBCunSn1YN28BH786c0k4CXHMllXFXt
EF7Cst7yhYCb0xEiVsx2kJ60H6cUE3By2M8iQ7ADKkv92cPLCKDWWPWdNO6A
6EdRNo21ZD0l+1UznDvgoqh5VHQjAV8/brvCFdIBtfbOkkJtBMSlrS04+boD
3KJVO3d3EeD+Qow9o7QDHnCFdm/qI8A0mt2Ia7ADXp4SZLQMEhBV7GWYxtkJ
ST9KPNAomc8X1rCFWCcsVjnO2BMEXMg/E8ah1Ak+iSrRuuMEqO8/LM+u3Qmz
1vNGvFME/GvSzVrZ2wlnjtu2+88QkOW8fu/y8U4w+CJg9m6O3H9BrH7RqROK
vgdE31kgYGvoytkFr06Ij1qdJrBEwMyqkbm54E6QvDoesXuZgPy0+nuzsZ3w
qXIMrVsh4Pqu76tn3nSCrnRD3kcS6/5Oez9V2AnrBVWnFki8ZBe7e7KiE175
Gc2OkvjLvzu1422dsObmkW+hJL55y+3MGKsThgx3HW4h4+vTrGeIlU7I1at6
3Ujuz5lkeJcl0gXG/yIr7ywSUKylJcNU6IJu4RHcMU9AYLFs2sjmLkg8wxkw
NEuA0XF+GN7TBbxl9QqJ0wTw9U9VDx7rgj1i6k/5Jgko9+xyGDjTBf4iCfNy
YwSE8lRO9nl2wU7XiL19TJL/x/mBvUFd4JKm7X9imACRDcmSPY+7oIQz5JNP
PwEPD3jrdhZ0gcy0mVk1qeexFqeq9l9doPmn+DNbEwF0lyP2ba1d8IV/8lgn
6Ye4+xvuNC+T+Stbb04rJcBaVoLeJNwNg20c0XHfCVj9ni21Qb4bBI7AiW2f
CEiobvhVp98NFhoKRn7pBDicKrKpPdoNNN/YaJVXBCiNpxN/HLtBdMkkJCCe
9KtYoNjvwG4wF6zOO/CAgHPJl1IqH3VDF7VG6gPpf5UtNtsqUrvh1ccrHr9v
EJBmrm1VVt4NZT257uLnCbg4IMf82dINPPU9hnCKgE1XBfx+jHZDVNePK9IW
BOTEdicWCfUA94yXXvduAgpaw4c/H+kBSXP5JwViBPhc8PH5dLoHWlqFNM/z
EKC3fFao0L0HgrrzOCvnWfBVDjbnx/SAtKdsZ3InC346MK9lNffA6r+Syq9T
WVA3uJ/vlUMvGKi0c69RYQERu37f7cu9IDy++Ze8NAv4jXlu2fn3QpPrPo4W
PhagtOJZRmIv+LjJnggeZMLbSzAY3NUL/Nv4PpcnMsF/Xvuns30fSDeZ1osI
MOHZWzFOQ7c+eFJxr3t6ehTyrcd3Kd3sg4XNqO9p9ygwv7zPbYnvg3K2R/4b
Po6C5W2VlyYdffDrve/GA6dHQUNQPkDdth/2nF++Uvt2BA58Xv7Kf7Efmrdw
a/5+OAKOF9sW+2/0g8+Wj1P3vUcgrjrOPf5ZP7A7r7tw/MAIcEdLOIq0kefk
mvs0Wt8wtK4W2DNuNQBP9XXbrggPQ4jGNFsueU6uUlGSu7V9EK577d/Y7zwI
2htCEzIYg/Affnqc7jMINXfXPXwxNQBGZnveeD4fhKBDZuplGQPA4xp+dFvP
IMze0BLZvmYA7qSrvMx3GYI/U0VrR1f6wFfNzrjQb5i8zx6v23O/By5tLI3+
mjIKX7/N/TFUa4XeM703E3JHYTEw+IxuTQuYJ7C53Pw5CirG8pYjni2wQ2K7
PhoaBe/PwPTGzcCx8pqFVZlwIkGb7dbBJoisuWeIs8lzbIS6rt+mHrKumc19
/sYCxk7Dn9Hm1TB/+nx628V/wGWdxejtTweHz+aHwp3GIdnV8omkay3enCtJ
k3Idh3PfBD5GVtdijvfNtS+8xoGT3VK6WbMOJybYWmQHj0NG3lBRxUQd7r7t
ZFv/ZhxsovKj13nUY4cDni6riHE4u1Qk+9elCTs0RAenek2Aevdbv4ANHXhz
tcUBzZsT0KvdXlft34E5yqQEC4InwOJsy/VfLR04seDZg1+xE7Dh+onoMwad
uPtZSgyrcAKOSm/LvDDViR0cPyRrs03Cj+9PFXYZd+PTY3VfvwZPwthv1YmR
ml5sfz3cIj98EpJLL96Xn+nF1pwmrPePJ6E1LM12nUwfNpcokolPnYS4v8uO
yQ592Gh7pueN0klIN1U8dIrow+q37qvu4J0CWpC1T9xKP1bh31+kKTIFCkJN
3z/LD2Dlh5STGySnoMtvwCVt9wCWT/EOklw/BWI7NX788x/AYmX/dU8bTkFq
JT1hhWMQz4oYPM4OmgKfZxYCbHODeDKWXePtgyl4xtsvWUofwmOKn0sSH03B
vpNZGyy1h/CwtvZExKspuKWUcPD3xSHcZqlo6vZzCjr5UgJpXUP4e8IypxrP
NGScD4v/UDCMQzflub4MnIZjdtZO1WgUl29u6PcIm4bvh+m82eajmHfLjM2+
mGko2WTUY+kyiu9s32bSmzINUy1docyYUeytn7desWQarujs+rhlaBQ7H8vr
esY5Ay2GBvdk/Jk41bzB8oLADARumVFYHcXE/ZYzv3XFZqDxp+P+jhQmPmWz
7UuL4gzc3PEqK7mUiS2d8uKk9Gcg4CNvv4YACxtezTsafXMGdMZbD264w8J3
rjeUOwbPgKdSnL5SJAt/95nZrR0+A3muxq9a4ll4161tm2rjZ+DEfkfjoAIW
3hqSJyiKZ2CoaPfQj1EWdg9tuN35YwZ+ND7ZmznLwllhM/Pvq2Yg+NCc1gkK
gdUebhsybZ8BJ3+z813SBF7zNK8kdGkGBFsSkqr3EtjheYOuNdcseNOcOVJM
CZyQMJO9kToLSKlLd6slgVelbEssX0X+f8p8IsyZwCdfWUjFrZmF1pEFQ/Mr
BH782iv8P9VZ+G3zfEOzN4HF0vN8eXVnoe+brTEjlMCHMhqmGvbMwlH91+eq
HxI4LGvG5ZXxLDwRPVC57wmB+fO2WRlYzQKX+Rq1M68JbPTRokbi9CyUbBHn
F84gcGCh1/4+51mIuv5zzD2XwBxf87bduT4L562V37p/J/AbKu3lkv8sRLfY
yAaUEviIlYu4171Z4IxZf3RfFYHnU3/4/3s4Cz+TOHZ+qCVw0rT82H9PZ8Gl
SbO0rpHAJnu97XqSZyFl+AczqY3AkxF/K63TZoEZ8ixesZvAe9VC3ph9mYXg
BQ9v9WECj17vlSz7MQsZO5UjCpkEjirdFaT/exbaV1/jn/1HYF167FRhwywY
zEJHzwSB+05PnN7SOQulBTK8ftNk/ZkHa9IHyXjsV33LZgm8deUVWj82C2Fr
Q3WL5gncbsLx/sXcLNgbW+m5LJL1x1mvluGYg1jXHJ/iJQKrD+bei+KfA99L
m2d+LRO4fovoPFVsDiJldN/4rxDY9/b5c0Eyc6CoQokaJLHyn5J6tjVz8Nfs
bvYSiatl5fddV50DbZ0Y3u8kvupyPXtCew42BX97uIXE8gV1Chf05uB16wVz
SzJ+KY9GeP++ORj+UXZEhdzf7fjdZTvTOVD5+fve2wUCSyb1uDSZzwHXPgOu
1jkCf/2n13LEbg5mAnBR4QyB/9v1eH/F2TmoeBFbcWCKwLTQ8bx9bnMg47G8
9u44gQuaTNbhq3OQHtFT70mQflR+FaVzaw6mVPkHxEZJf3iwc2bdnYNLgiu2
9oMEzvpudWljJHm9m7SRdS/pR5HcjuS4Ofgz7/eOp5P0h62IqWzSHBQ+ln3k
0ELgt2+dPz16OwfvT2eIXagn8LG5YhXRnDmIDihQV/5D4EUDudiQT3PwW/L+
VPgv0g/dtR43KufAtecbvoJJP2io907/nYPzZR+7RvMJ/PRG8BG39jnI3JQy
KpFFYKaknsZpguRjlxbn1SRSX7OXg0ai81CoYWPk60/q+4zN4rvUPKjzxH67
eo3Ud/hkyU7Fedi2bbFIyY3AGoHCiepa8/BOEYruWZP6fLpqJX58HqQoaW4v
NUl9+GvL7tvMg6rKk3HldaQ+lmo6PE7zENXLV32S7Ge3iS7xec95MD9rI/GX
ncCiKsZVHY/n4bpco65cJQv388SLlibMAzeO3i7/lYUL+saPZaTOw3+7jJ+3
ZbGw44u4lpv587D7apl42CMWzpccHlRonIe5jan8ZTYsbMtzl9ORsQC3s5Jf
FLUxsVZfq4GJ3AKU31Hjj6tgYt6iTSHaygsQy78wpl7IxFm+jSJc2xZAMEu6
KeoRE3NNK8u+NF8Atc4iy+MHmfhd7w+dwegFEP0hfa/y3Si+9V3ap/rZAkRf
MaTFPxrF5gkXcX7KAvCeG8Ca/qOYzZpucPfDAjgNuhk/Ie/fR2vPHFX5uwBv
vPa43FkcwfPfKBddxBfh1Xh/Q7PuCDaK10/6F7kImnZx38QihnBQaXWb/5NF
OK/83pzr8hD+MWYrKZG8CPxvH2p9ODKE9+31vr/9wyJ4ck/yHhYbwvpD2V7+
DYtw0e6fkn/EINbVWmsivmoJbLOCjcTJ82zTT56pbSlLEHiDetd5ax92/Ret
UZ62BI9cxqSqhPtwutQaZ+vcJVB5I7JvYbAXq7mgjps/l+C2btJCdlwvVhG9
VlY2tAROk3843yz04DVWw8+s1JchfCCBjzOnGzOICgO/vGUwaEqNsmDvxI8j
8KkhvAzqd8zKGW87sKR2ls/R0mUotbF8pHmUxNceZSk3LcNoro+CT2I7luZ0
kK2eX4YzcqliAXptWJYxMyW/awXUAm4XbnBqxutAIeV78Qr8bf+WtBBUh+N+
FrBz/seGKs/07+e//RXrrt69Iu/Ijk5ICjb361aBkXXdZYdz7GjTgk20Hudv
OPbkbH+SCztSE2Ad21f2G85LhVWu82BHlQel2Ta9qYY4iZYnqoHs6O2lr8H7
tGpgluqho5PKjgL7S97d0v0LOcupl8xG2dGUx4lHAWta4Kuebl/4P3ZUfPdt
RRc511f4/LasmWRH9uoa0zOtLdAzPwXHl9hRJ7ujj2lUK9Bm9IWshDjQ6ruf
WkJW2sCNaH3jtIkDPfnjWFx4uhM2dor03nDnQLenTav9BHrAdED+u+dVDiS3
/+mLfM0ecGNtSnD14UAO8vdbf1j0QM7iIetTdzgQbWpOzyGpB3SlIur2RnEg
4fBTIfd0esHkiGiJQA4H0hRqdLI/2QcuxaIvYyc4EKHwcM3QtQEI+6VwJ3KG
A+nYJKhoxQ1ARo2mw70FDuTy1bfGqGAAJjsPy97g5ES2R0+P/J0bAJ+liBh7
MU70xPe/aFfPQQjdSgtS1uJE63ZMshzPDEFaKu3ch8uc6OIaLrFIyRG48xfv
5vTiROeOmjQMao2ANccFmcPenCjNvPrzrOkI8Fv/rBq9zYkO2Rg16t8ZASdh
ny1rojnRN+XPBVdHRkDes4/jYR4n2ibywEbz3SjMJEa2dhZyIq1ny7Xz30eh
6jfkqn/lRDfiBGyuNY3CjQ1x/5WXcqIdalafo7iY0NxqWs3ezIn6k4/47jrJ
hKg9+c/cFjmR9RrOUvUpJpx3O+P1hY2CaKXPEjR4WKD/jHZYkIuCckf1oFuS
BWPTLpRUKgXN9xF0650sMH2jcL5DloKk20IsnvmwYG1D1V41JQqq0NnsrxzK
gkVOH1lvZQpqOn1N0uEJC97a1P+hb6Kg5mau4YF8FvCK3tMx3U1ByNB9SfMf
Czr0dGhP91EQ76kqq51LLMh17hsZ2k9BSwNaKxN8BJwphviAIxS0eY9jxGVF
cv4fG71aa05BqfftkI46AeKycUcUrChoueFnzrvtBHz3muT6fJqCRJuOe70w
IyA2+UUH/zkKSm42ClU4SYDbH9OPli4UlM+9d9LMkQC5ja9dJt0piLksfCzP
i5w3221qNwaS8TfXJqTFETBpqPfsTAgFMRzdj15LJMAlc9XZ+DAK8u0Yip56
TYDVnZZ52iOSr9ghv5U8AmqYBcUmTygoUF6Lcv8LAQcs4sIC4ymosun3n/Ji
AnaonFCcf0VBDirSAhbVBGQ91BnVekdBp06Unkj5S87TS4zcCxkUxK/1Ky+p
mYBEpxm/VzkUNPvoseSRDgKkq+v3d+VTkMU+V7eMHgIit+eKyXwm442b53wZ
IIA/Kbrt2DcKmjov3+wzQoC/oMersBIKkkk/0zjMImDO49il0jIKSlu4+5J3
nOSjQ2snRxUFjUx81K2fJGDQSIxLt4aC1F6OPDw6Q4B91niVRz0FBSS1p9yc
I6BRpubx+2YKuia06oLNAgGHAjIdhtpJPlOne4cWCShlhasq9VBQa3sI37pl
ApCl27T1AAVtqPnSILpCQP43s68xIxRka69/MI3EmzZqhFQTFOS94cG5WRKn
Rgkd45+koCcPB9dPkFh+mbl67ywFVVVYhT0j8aOzlQM3FiloshzHzpDxhf68
y8xj40JJ+z+YsJM4cEeo9xiFC4n9ePm6gMxnOen8vo18XIj/Wmm2EpmvJ9VY
+AyVC/02lXTVJetheao0PRflQiptNp0Usl6nTr6kRgkuZGWhQr1B8tG+f8iF
Js2FlG82LiSPEWCeXbrVRJYLtceGZvuQfFatSmULVORCF45p61JIvg0Cg8rx
Oi509WPg852kHltOGNhqaXChit4pekE7Ae++r11/QYsLiWRc1Gcn9V2jyjX+
chsXWj2///JsHennlaIAacSF1qr502bKCAg9l2R2bC8Xyqy99Xy5iABKjb9U
mBEXKlXf4JT7mfRn8u409sNc6Hv9ocGtGaQ/hRS8dh7nQoF7cotXUgno9WLb
7XGCC103uy9/7QUBtQdw3eApLgTFROKNCNKfOc+fKzpxIW+bZ2O8d8n+We17
ztqZCy1EsInsu0n685/u4u/LXOjPfL549QXSnydX/eDz4kKFSmc3yJH9k1i0
8GCPNxd6b+3jLEf2V2RMgVLebS60aUSkQWsfAZd0dYyfR3GhqhsB+98zCGC7
GOX34DG5PmNnho0gAWHx/7JvPuVCh9126payEfCG4/Wq08lcyGmZtaFmkAXd
pVIs5RwuFDl6at+nDyxwm/dQlMrnQuGW4YWmqSxY3lhjzv+JC308laP5PI4F
Mg9C8GgRF/psLRPj7suCY8cXwjNruZDzdo7XHHvIeIEWJYkNXOhes9edm1pk
vPzsuYctXOhRwXq7T0osCJVxcfDs4UKi+vFPL3KyoKSrVWvnBBdKX8su/w0z
YevFL/XFNG6keafABlSZUBwvLZBL50aH6g6Fpksy4cgfT3glzY3SO3TWtFOY
cFFbI/WuIjeaffJFz691FF7Nx18z3cyNRI7KT1cGj4Jk0K1VjYe5kZ5TruaP
vyMwH7/XYSScG1V/otFu6w/Drhm9SM1obmR0jv+H6NphuGW67btXLDda0fI1
s+EZBt6lDYqURG50yb9EXPXXEEicFO5elc2NpH+9GckwG4JN4s2nTP9yowGp
U/zPTQbhTLDrqUwpHiTa/yL4hGQ/pHaci5hZzYM6RO4eV5rog9GtDt/0FHnQ
B82WLzmVfXC575hCuQoPqueeGdDw74Ob+ju6unfyoDXJv3dGDvZC3CLllLgt
D2LjLhi3edsD1W5x9l6JPOi4BXVPn0AXqISLLLi/5EG3LRW0jXs64fb7wOjL
b3iQMd306L2CTtjKulx+IYsH9Z04ePfJuU54dt5Y2/E7D+ItVvwpENgBzk6L
PIe7eVB1flzaq+5WoFjbvldR5EWr7TPyOl0aYLuh4nLbC170du2hRK+un1C2
b3sqesqH3pd2h72t/IGv/vRV90vgQ4JnBnZwxfzE6/cX53xO5kPNpYXKSral
ONDE7NuOND50IudTYxKzDO89eqZZ+wsfuna77OAtvkr81T5CcEMnH5LKe7nz
euwfnOc95Ca6hh85DF/hfhjfgJ2W1GfM1vOj0JlqGfnlBkz3c78RpsqPqrcb
OrtZN2J3/5W7Alv40X53rxlzySa8+a5EEpcBPyrXPdOocL8Zp8fs/jt3lh8R
3K/Yu/5rwymZsdu73/Ij73eV6u3uXdh5wUql8T0/+vVmziDhaRfetE9Wpiqb
H61ESgXsLO7CnxoTFz8W8qM2LERfpHXj2pW3OOIXP2p/8Ff0aXo3Zjf9sm/3
CD86z7ZSJdjeg22Guw8nqAigR5E2T11l+rGidop+jLoAAsd3q3L0+vHgjbNa
oZsFkPRySuhPu37sLjoqfnWHABJ4Zy58Mqkf39OZajA7IIBe7v59a+36Afwx
kMd25T8B9PCOZhx9/SCWUFJ1tn0tgBIXirffWBnC4ZH3zF+nCaBDMYc0HVcP
Y36OEf3JTAE0zRC7wbNzGLN1vZYJKRBAfuc/tt/yGMajz5UrP/wSQDPjKQ/0
BoZxsbTSJipLAD2N2Lg64vMIhhD/VZbjAkjG71u7dMMILpjr4k2aFkC0/HFv
638jOKMxoUtnRQCZ3pXay604ip/GyD50FBFETdZGosxbo9idJj1duFkQGRTy
7arRYmLi1rVu7m2CKNXj3ZtPRkzsPNZYdXinIDqbyNhiZcPE9tWPXg3sEUTd
MUersgOY2CRM4oTYcUGUYjnjXFnDxD+X3PfZnhBEZTS61NE+Jta/UKf52kYQ
6WVuN7s3w8Q6Jg/5wUkQcdz1e0STYWElftFPzl6CaOFVdryXLQs/v+aW+sFb
EFHN1cJDL7Kw5NDvKLabgqhgv0TKEV8WFioNuxATLIj2nLsRO/aUhecDBOW+
xwoiGfU0J896FvaYOi9AfS6ITrZyaoj0svA/x18zFomCyMxt38iJMXJ+3BNS
zXwjiF4HP8td5CdwDTuvv9QnQaTv8IHHZweBWWmxtoe+CiLz8NXFtvsIzHdy
486gYkF0wvWn04QZgVGW6eRkhSBaaiKmNB0JbG3bWb3xD8nX5/b3LRcI7MV/
Oc3hryCKuPlveKsXgdMdop2q2wRR/YbSIPa7BC4XUt7D0y2IfhXIfnaLIHBf
Qb7crn5BJEd8lI6IJfAqsdbGtyxB1Lrx2HJvKoF18IUP3eOCaE5ewFYyg5z3
z69ESM0IIr9xz9jFXALfK1I0Dloh6+c+addQROCXrjnKXzipKMctt6yyjMDf
ZQwoUzxUNGIZ+dv9Nzmv/2zo3ChIRQ1ffjtU1BF4/sp/nx1EqGitMMOzronA
dPmF2FhxKjq+t2ExtJ3AmhWhntWSVLSZ22BkqpvA59ZkaOxSoCKuzoHaxmEC
36neLeixlopWvz5XcIRF4Hif2sG3G6jocKRWl88YgQvWnynpVqOiSJ1TyGKS
wPV10y+kNlNRwrU/1V3TBB6/Gex7aCsVtQRsDF01R2CqmrRV0A4qYvxrc+FZ
IPD6prfbvuyiorBC2YuJiwTeG6AnPqVPRb/PjtxjLhHYXvP3v42GVPRtnrdo
cJnA3m32lQ7GVJTPSxGNWiFwzN3x17FmVBRRsMmdIHHWljuB1UepqOfPm5F5
Eld1SZzmsaQi7bfHvXJJPHT/FeyypiL9Xa0MRRJTdmxf5WFPRVarMqv0yPjy
/eWzbx2pqNBF6Dkfub9upPXf7nNUtNw/FRxA5muxi5UpdYGKXvza9DCTrOfy
sF/YoUtUFNBs9u3+DIHDYkTPB3lQ0UPDt5LSUwR+o59k+OUayXeaQ7z5OIFL
WNprpm6Q8ZesrfcQBO6M+8Gm6k9Ff9yMLDpH/v9+x7LNIZCKoi7FPVYbJLDk
xNDH2BBSz+AHGzb2Elgr3jumOoyKNhpsFG/qILCpMfUKz0Mqalunc3pbC4Gd
Z56b7XpERZzehooG9QQOTNqk6vGEihKNMm24/hD4hdl33nfxVPRDNUrR4xeB
G1/1fZNKpaLcJrlbTv9/f3TU6/mhd1R0Nr5PZzCfwMJsfN5BGVS0XcU2VzqL
wAaWqtpT+VR0U0/JMDKJwB94r7ysLqOiob5jFZX+BO73ucX8UklFu7PKgtyv
k/mPPdBO+0NFbIVjbfWXCOzT9O773SYq8s36k1JlR+r9pr9df4iK5Lx86kJ1
COwpO7VWk0lFKr/XRNLUCZwayXlBboyKNKY9w48pEVjAW35hYZaKkBNvGpVK
9rfxScYHXiG040wIw6KNhSlfz9kmCQohtUql4G/VLLxV2yslQkQIiZevpwwV
sXDcqiiti5JCKDPvbZjraxY+xaw0U14vhPYWlcraXiLvJ2G7g2MNhdBvX4mw
1kkmVuQ89DvIWAjJHUjlXtfLxMe8bOmeZkJo52Mcql7LxPl23slHLISQyBHf
4zcymNhv04evAmeF0GknPgr9HBML1ayfuxEohAS/7Joy/zWKkcE25BIihHga
InFS7ii+XLAv6GSYENr1MXhd1otRXJ/oILEtRgiNuw3cFPcaxc+uPNX8lyKE
ho7+8p+UHcWqEiLODiVCSCyRYmJyegSLvS98l1ImhAwyrmflGI3geaOzxGCl
EGL7JX6qQW0El/p8cXetJ+NfWHxtMjOMHXtd/HwGhJCh/bbHy4HD+Fl2WVQM
nzBKmGp5gGOHsNCR27j8oDBaCpqn1ocN4KkRdQ6hI8Lolo75LSmXAdwa0Lz3
sLkwuvNqRVph/wB+81GzvMFWGLXs2qPsyzGADRQ663pdhdGOrD9h1y73Y99/
usPLEcJIbmdg8w/DPkyETYtr1QujDKmLcQ7l3Xj0n+x3tWZhNPm2jPYqqRsP
HzF0Xd8ujC66mPB/9+nGvfTHZav7hdGPurA/PurduPn5dl/eaWEkfczmkHB4
F3aw+DLB4hdBpzJF3k0Zd+KDZ9ltilVEUMfRpzX3jrRgpaAgDVdnEaSQ+OLH
u9XVuPtkS7P+gAhyzhS67HPmEwjqWbyyHyKx4Z4LGnOfYYtc7RXfERFUsvpr
T0wohuCecsECQgRpiA9lbD/xDTRcCnZpzoqg5113/875FIPPjdhEOT5RtOxh
9J9pQTlIJFg4L6qIouzVxPsDfrWwy792q7SaKLqwN1Z+sqMWzjmacepoiKJ5
R3Hf86gOPq03fHpFSxQdiK3Q+sr2Fxwyt1YN7xRFzzJpEgO+9ZD+XWJzk4ko
WlU7/cvSrQmM+mrnPlwURU7NqyysFTrgxsYw7/duoqjZUPc+v3sHZF0yWkq9
LIoMPZg/rvzoAJnlT2xPPUWRmrvp9h1bOoFFf8nj7yuKDiUIBd5v6IQoo6sS
pmGiqGmgRVVTohs6367S7E8TRaOet3fTLveCxHh9Vsd7UXTl1c10t5heOKAT
od2UKYpiPAYnXhT0QnYxl07FB1E0I1pf7s3RB4FtrF1Zn0XRxNHNYpTwPlAV
/mbiW0nm65WUrpTYD1cvnzlHZ4oijQqJf7EJgxBszDq7gxBFCRyl/wy/DcKj
NV5nbcdE0ViKjFJu1yDk1gc7vZwSRSa5/6r+KAzBxI53jluXRdE/0XeGS8+H
4CLnhL25MA19uMPi6wgdhhut3vbXRWlIUt7hjPPrYQj9QLF/LkZDzt3GvJkl
w/D2LN2un0FDiuQY6bo0DIO/ttt4ytPQrvGBqZT/RuB01M0TMZo0NK317neR
9ihcvsB3okCLhl53tnP0mIyCv0GkZfsWGpJ1tNj70XEUEmaTLNbtoCFlbfGl
uw9Hod365/FcfXI/s/nCD8xRYG45dLx5Lw3ZTVytCeRkwqJQ07FlAxp6LOcj
T5Vigsy34aMGxjTkzt8foLOHCZZrhY7UH6Whp3IhUZQoJpxbjjk8f5yGZozV
bl57xQSvBrnDspY0tPPMt8UXBUyIuat5yMmahi4FL/YIdjKhlnnMdNqRho5s
+629T5kFprlPDtA9aSg1aOWL5CsWnJtwWJG4SuZ7yn3vpxwW3N6kkiNxnYbU
KHE/pb+zIP9N/moJXxraVnfajLeVBYrxf/+JBZJYYmx3Ijm/6rY+TRELpqHC
9Pf3pSUJsJByPCkWQkOzRRUzJkrk/P5wvIgWRkOusYyiDh0CpoOEH4nG0NCv
NMbTAnsCRErqjUUf09C3+le67M4EbOR4ziYaR0OjHwL2sF8hwN5H1VnkOQ3N
CXRpqd0h4PrHCVmRBBrK5/45bRlKQPR0Qa1wIg2tp1fU6EURUO62X0/4JQ2t
VWp9sDmJnP/TRMaFUmlI1f6Amf4bAlaGG14KvaEhK5/nvfyZBGifcRIRSqeh
e7LPjv34TIBpoloJNYOGtC3f0D4WEfBfx+Q1ahYNpUievuBYRsDzE7d7BHPJ
/cNv/uitJSA/5sBjwXwakvYwTvvYSEBtrehBwQIaKr8Yxm7YRgBLpIld8BPJ
/x2hj6FdBPCaJuQKfKEh7zTN8pA+AhTvnT0v8JWsd3B54+4hAvRK1eUFvtPQ
oUOy9e9HCbDkmq7jL6YhwY1NX+sJAi7rf77L/4OGklak+j6Mk/z63dnFX0pD
cUkuugenCHj1yXiCr5yGVvYvf306Q8D3OVoqXwUNeYY/u5A8R0Dr1mZrvioa
Ggkp0HNcIPW48kKUr5qG/lY6qbUuEiCaee4Hbw0N8Xod3y64TIAqS8Obt46G
5La02E6S2GDjjAZvPQ3dOMh6Qj5vgf25L708jTTUm7CO+P/3R94pAbE8zaRf
0z9bLJE4ptvElKeVhtRjwv6WkDhDTpyTp52GvjDo/xmQuNy6JY+7k4ZYkZfF
/Mj4fbGJLtzdNGRJcax3XSKAreE/Be5e0q/sJjmSZH7S4pr1XP00pJOjlnFt
ntTv8GwI1yDJV01aZeQsAWZhGLiGyf6IoYk6ThPg/CtwkjJK8p+/x485QcAd
XtPXFBbZv9blqzXGSD33SdhS/tHQIPXP+HoWAR/9W2mUcVK/t0pcLcOkfovO
PpzTJH8+HGznegg4YWm8YW6GhiR8pDwtOwgozt5Yz5qjoWHO1zRKCwGxzqMa
zUs0lBmo0Rf6hwDKj4rW3ys0xDP7WMO5goCLCml3S9jFkGaWXRnHTwL2Nl7o
yeASQwHFB6SdCgl4r2Ua/pJHDO2IvTO86QNZ7wN1vad8YijxmoFuXjoB//YR
MUFUMeSQOvR0OoGAJ9luB2wlxJB+bcbybn8CuIUPzxxliCF+W4Xbw9cIcHPW
TN4vJYa0VNbymV0i9VMYX9JeLYb+FTY6mtgRMB52JVNgLbne+XmQNNmfNsNH
bdmVyf03H9mdokZA6T5tgZn1YiiYzerFqCIBzxYnHbtVxVCDRUJmJtn/Rs6e
kh+1xdBUuDJmtLEgu8S8JH0rWZ/6h6Mh1SyQVdh2OVlHDN3XyLMoKGLBRMPM
rwe6YujtOpvVR1+zSP6v+TntFUObJFzKnC+xgO/FCVVrAzEUnjyw8suBBe6L
25sOG4mhmemByJGjLNifPb9Zz0QMjeQ9MHPawoJJeZ9+sWNiSIEpVH5wigl2
PtYP+czFkNm2U0EpvUwob9BFKxZi6GnSx8xPtUyID1uKHbYSQ/8JrunckMmE
A4u+B7+dFkP4759izv+Y8KLhVs7FK2Lo4iqna40Vo9BfsqkjzEMMcc+2mXvl
joJqTgffey8xVGl9fUdl/CjkhuvZEd5iSG5mz8LzS6NQsX+Oz+2OGHpQ49DW
KToKs4VudpeiyeuHHpmI7xuBXW/kQiIeiaFnO/hXI5URuP24KiczVgz9vZ7S
vU54BIQ8VPnHn4mhNZ23T61rHAYl9cGcyy/FUP8tza5Jp2EwTbDjd88TQ698
0nKFrw5BVJjQlqiPYihGquaJ4IkhaPL5bJdTKIaWNa+Jl20fAscTMh8msRh6
fa10+db8IFyjNdh5lJL12W8LX7w6CMl3TD94NomhSC+4auM8APPn9OyvLYih
s5bzEdoKfXCgUAV5LImhguE0M6ulXnhClZS/tCKG5h87RR9t6gXdrPGOc5zi
qNLLdvZjeC/4LryysxQQR1TedpbTUg9whtHstsmIo6dvXL3uVnWDYPaAzdQO
cVSzzktzz5FOWL0UYXXpujh6JH9T4Gz/X+g3vFfOS5FA/VKXeZ49eIsdjO3l
13JLoCLteHplfjpuM93iuZtXApUdihNv/JeB6453KFwXlEDSfZn126Ry8PfT
WtdGxCXQ9gUFK++zBfiZX4ty1VoSy2uom3kX4WN5GwMeGkog6/wNbkTXb1y0
rgJk70mgy60JcbnVLfhAWMcB+n0JxB4h//XD2lZcPTV+XOiBBBK4/OeO1/VW
3F4s5bIcKYE2MLj4kFIbnnU4+7g9TgIF+NkNVF9qx6rxHGPP30gg957giA23
OnEMY3uiXLkEUjVvJdimu/EqP5M0RoUEenFJa3pRpgcn9dvlC1dJIH6K4OHf
u3twxofAqpU/EujQ/byCqdAe/Oto3XxHkwQqET/lihR6MVu469GEIQn0yM1A
Lmh3H3bmfUlR4KMjZSHZjkLbAfyLI/j+HgE6Gk8UWv381gBWXfqP7kSlo97L
xoy9yQOYGFNb/1aUjnSOT7Q1DQ5g95YPxluk6UjaRV1JyXUQ30gvidy/kY6W
7xaLdLsO4fbUVzIuanQ0o7RQ1hA2hFHS3eQwDTpCR8cW76UNYY7HB3Nrteio
IrM/Wn14CAfe+ttko0tHWw5GKRyzH8bhx/rkLx+ko8Lqw7s7YASPmf58HWVG
R7R4mnLsyRF8ZP/rzXmH6ej2h44RQY8RLLHrwt7F43S0KkyIovB6BMcpT50N
tKUjvZgLmyapozh5nvI+zpWOtFkdHULlo5hrqn/b50t0VH2g3NuocxQ7EaVf
O67QUZFtlrDO9Cje0Btas+YqHVHXG4COAhOnV4pPp9+ko6rvpSW5V5g4L2GN
XlEEHb2+l6bix8/Ca1b2en97SEdWOSYXG6VZONzmzEccTUeZn864sFRY+Jz0
yy2fYunIcEsd76EDLCwdpaz+4QUdFUiYzfUFsHDguKFLdhIdleqb7VGIYuHx
Q+feZKbQ0QbbYh3JRBb+RX29Lv01HfUZ1r3W+czCPkEqcq8y6Sh6yM8e/WPh
wb4DNinZJJ9nxz4fX2Th43vPP0n6QEcvdJfa1vISWJ39HSPhIx3xHBtcnJIl
cMd1NZHYb3Q03Ldq7sh+Aps0HTR9VERHT2R03uw8SuD8bRdDo0voiH4NW7Vb
Ezh8Mp03soyOvHY8cD7sSmD9i5vY7/2hozNp/Ryj4QROrzgEd2vpqH7NH9/E
xwSW2XjpRtBfOoq4QrOnJRB4ciBz7nYT6Q/qFxHZdALbG9Rs82+hozb/kq8f
cwhckTzucbONjq6ftX0kVEjglFNa4z5ddCR/1vhmzw8C074e3eTdQ/KtrnH1
dAWBfWXdL17ro6P5uaJTT/8QeNgn6p3XAMnfSVvNsHoCm7fkDHsM0ZF18ViL
TguBv2//u959hI6uJotYPO0gsMbjKafLTLKe66OP83sIzHt8a8/FMTpS7/xk
IjNCYPdsc4ULE3R0LGBT+ikWgbtEvezOT9GRopvdB/sxApu6PXr23wwd6ac8
spKcJHBBVV7L2Tk6ynv9Iy54msDr1BqlnBbo6ET4tQuZswSOvDdr4bhER1Lc
bVWR8wReHpKMcViho2zrzwWqiwQ+b7S9zp6dgZSjAtX8lgjc+PIEzY6TgZId
9q4JWSbwXq7rh2y4GGjTzsSnB1cInHE6LsyKh4EajoxElZF41feCihN8DOSX
zC+4TOJg+RZ+SwEGOjgRwj5C4infBSNzKgO9/xXjEU5ihzaZoGPCDLTiP3uO
Rcav2qlbckSUgQq3SLdRSByS77FgIMZAG2Xv3G4m8zPc8l5zpwQDDWflep1f
IDAla/CsBoOB8rb++JT3/++f1BWfK0kxUPCFk+Z4hsA33lrVMWTI/KPSjfyn
CLxjfTS/4GoGij4R8ZhtgsDTyVWITY6BGn87Gu/4R+BsBV6vSXkG2nFG9qwG
k8Buz3enDSoy0Nq/BuMdQwRWlfHuaV3DQPel5yeM+wk89ChH6s86BkqyH7hy
pZvAL8VZZiXrGejs+KHr5u1kfRHKgR9VGKhuvaDIVBOB5YROfUpTZSB2y1u7
zP4S+DFP3fqYTQyUaSMVtvUXgY/fodqFbGagFJ6R4qIS0m/shtG+2gz0SrEO
C34l8L35j+xndRhofihGqyabwEZeE9usdjCQUkb2D9M0ko9J1Ytmugz0qfvC
kaCXpD+Z8c3bEAN9fhEcpkr2ww7nJhFVfQaS5P1sE0v2y0w/zVB+LwM9Ntl6
+nswWW9nQDavEQNd8ew6tv8qgU/Xng9tMmMgj69GVarHCCx/KOV75WFy/YF6
gxsHCNxa0T777SiZz8vtoSGI9PuPw2feWDDQtU1BtS0b//894bZd3nYMZGfQ
WWm1wsJcWy+5u55iIGHPX4rREyz8PevNm9OnGUhcftPKvQEW3vluNcPkLJnv
acvcrCoWVo/n/LfKlYH4Hw6ID8Sy8LCM3jrRS+T6wKuPhUNZ+NVjT2uuKwxk
K/f31vQNFpaPHCplejLQomzsyoo9C4sF/H7xxZeBtCQfS3GtYeFZ5ydH7cMY
qE8+XGnqGRM/uJ7E4xfOQEY/jj+9F8LE60LeFj6LZCBry+tnGzyZ+PjrQqWW
GAbasq/50wNTJs4aaJk4Hk/6w7mDcnd+FLs4rooyziD54RR0r9w7ijnd1xg5
ZzFQachmSo3qKI67rboYnMNA08KVJx+Ij+KyRF3HH/mkn9Y4HN7SM4LXdVlr
7/7GQA72hvu23BjBnTbP6rbWMFDLlpXoXcnD2OtCSvDxOgaSUR+qZgYNY6Eb
abru9Qw08W7P/Inzw1jv6efkzGYG8p4c3u6sOYzjmtvcVXvIej+p3bhcMISP
WchKKE6S+eUW5Dh+HcSlh+KPU+mS6Myl1Emu5/3YubjvC4+kJAroGVCz8OnH
VB3V9RzSkuh1wotBz5P9+Ijcx/np1ZJIsUuLqkTvxy3MmvjOtZKoyUfj+NZ7
fZgVwj2cvUUSffApOhjq0oslSi74njwuieQd7OjrhLqxw3bdV6+iJNFC/39q
AbgJ/8esnGqNkUTD4hbrLG2bsNsLu720WEn0cf3Y3b7FRuzHd7vL55kkQoIi
WGt7I37aVCZz5KUkulqRfaAwvR7XX7MIX8yTRDRDb0/HsFp8oODytcMtkmjv
wag2C7NyfPgipTSwTRLdTNX0+exXhi0VY+ifOiTR4mTXhrb3pfhsyMfsdb2S
KLLv35Ojwj/xnZNsrIVRSZTNud/R6lcR/jJ/3+HlsiQ6Ef3mc+yVAlySLpfZ
wiaFeHSSdn2tzMcVDpkrIpxS6NrTntxE5TzcUl731JtHCkUObUpJa87Gs3Ey
DYdEpNDqnWrBOT5v8Ipp2tpAmhT69Hvo7he1V5ibE9wLxaVQlN/yTHB7EhY/
7yC6TkoK7b7CWcPtF4dl5CbtrGSkUPqH8yr3Oh5ixdqA9PDVUmhP4QW2LL8Q
rBLEWCqRk0LP64Tn+W5ex5o7XxsvKEghRlltzt/q2C//AzcDgzs=
"]]}] // Graphics
Out[3]=

Applications (2) 

Compare the internal structure of similar objects generated in different ways:

In[4]:=
{ListPlot3D[Table[Sin[x + y^2], {y, -2, 2, 1}, {x, -3, 3, 1}], Mesh -> None, Axes -> False, Boxed -> False], Plot3D[Sin[x + y^2], {x, -3, 3}, {y, -2, 2}, Mesh -> None, Axes -> False, Boxed -> False, PlotPoints -> {7, 5}, MaxRecursion -> 0]}
Out[4]=
In[5]:=
ResourceFunction["ShortInputForm"] /@ %
Out[5]=

Check the result of applying Normal to a graphics object:

In[6]:=
pl = PointValuePlot[Table[RandomReal[10, 2] -> RandomReal[], 5], ColorFunction -> "Rainbow"];
plNormalized = Normal@pl;
ResourceFunction["ShortInputForm"]@pl
ResourceFunction["ShortInputForm"]@plNormalized
Out[7]=
Out[8]=

Properties and Relations (4) 

InputForm always produces a one-dimensional representation of the expression in the form of pure text, suitable to be typed as Wolfram Language input via text-based interface. Within the notebook interface, semantic selection and code highlighting aren't available with InputForm expressions:

In[9]:=
im = Image[RandomInteger[1, {10, 10}]]
im // InputForm
Out[9]=
Out[10]=

ShortInputForm produces shortened two-dimensional output, suitable to be used as input within the notebook interface. Semantic selection and code highlighting are turned on by default:

In[11]:=
im // ResourceFunction["ShortInputForm"]
Out[11]=

Special forms like NumericArray by default are kept untouched for readability, but can also be converted by applying ShortInputForm to them separately:

In[12]:=
ResourceFunction["ShortInputForm"][im] /. na_NumericArray :> ResourceFunction["ShortInputForm"][na]
Out[12]=
In[13]:=
NumericArray[CompressedData["
1:eJxTTMoPSmNiYGAo5gASQYnljkVFiZXBbCBOamKOsVEOSJILiiGgwZ4BA8DE
QDQMI8uhi2ETx6UHmzyx5hAD0PWim4PLb7j8hW42PjPIkUOoAQDnySvl
"],
  "Real32"] // ResourceFunction["ShortInputForm"]
Out[13]=

Such forms usually can be converted to normal expressions by applying Normal:

In[14]:=
NumericArray[CompressedData["
1:eJxTTMoPSmNiYGAo5gASQYnljkVFiZXBbCBOamKOsVEOSJILiiGgwR6VRhbH
JoYNIKuFsbFhfObiUkOsOehsfOYRcjs+tyGbQchtxOhD8AHOCjNb
"],
  "Real32"] // Normal
Out[14]=

Possible Issues (3) 

By default ShortInputForm[expr] keeps untouched compound-type atomic objects when they are part of the supplied expression:

In[15]:=
expr = {RandomImage[1, {50, 40, 20}], DelaunayMesh[RandomReal[1, {7, 3}]], Graph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3, 3 \[UndirectedEdge] 1}], SparseArray[{{5}} -> 1, {6}], NumericArray[RandomReal[1, {5, 5}], "Real64"]};
AtomQ /@ expr
ResourceFunction["ShortInputForm"][expr]
Out[16]=
Out[17]=

Use ShortInputForm[expr, Unevaluated] to convert most of them into actual input expressions revealing their low-level structure:

In[18]:=
ResourceFunction["ShortInputForm"][expr, Unevaluated]
Out[18]=

Alternatively, apply ShortInputForm to the atomic objects directly:

In[19]:=
ResourceFunction["ShortInputForm"] /@ expr
Out[19]=

Neat Examples (3) 

Box structure inspection (1) 

Explore box structures generated by ToBoxes taking advantage of the easy-to-read representation generated by ShortInputForm:

In[20]:=
Graph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3, 3 \[UndirectedEdge] 1}] // ToBoxes // ResourceFunction[
 "ShortInputForm"]
Out[20]=

PDF formatting (2) 

Create an auxiliary function that exports a supplied expression to "PDF" and then immediately imports the results as vector graphics:

In[21]:=
vectorExportImportPDF[expr_] := First@ImportString[
    ExportString[expr, "PDF", "AllowRasterization" -> False], If[$VersionNumber >= 12.2, {"PDF", "PageGraphics"}, {"PDF", "Pages"}], "TextOutlines" -> False];

Inspect the internal contents of returned graphics with ShortInputForm:

In[22]:=
graphics2D = Plot[Sin[x], {x, 0, 10}, Axes -> False];
graphics3D = ListPlot3D[{{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}];
ResourceFunction["ShortInputForm"][vectorExportImportPDF[graphics2D]]
ResourceFunction["ShortInputForm"][vectorExportImportPDF[graphics3D]]
Out[23]=
Out[24]=

Resource History

Source Metadata

Related Resources

License Information